05. Find value of k if (-3, 11), (6, 2) ad (k. 4)
ane colliner points.
Answers
Answer:
K=4
Step-by-step explanation:
Collinear points means that that the area will be zero.
Area = 1/2×[x₁(y₂-y₃)+x₂(y₃-y₁)+x₃(y₁-y₂)] = 0
⇒ 1/2×[-3(2-4) + 6(4-(-3)) + k(-3-6)] = 0
⇒ 1/2×[-6 + 42 - 9k] = 0
⇒ 1/2×[36-9k] = 0
⇒ 18 - 4.5k = 0
⇒ 4.5k = 18
⇒ k = 4
Answer:
The value of k is 4.
Step-by-step explanation:
ATQ, the points (-3, 11), (6, 2) & (k, 4) are collinear points.
We know that when three collinear points are connected, the area enclosed will be 0 square units.
Therefore, we'll use the area of a triangle (formed by coordinates) formula to find out the value of k.
x₁ -3
x₂ 6
x₃ k
y₁ 11
y₂ 2
y₃ 4
⇒ Area of Δ = 0
⇒ 0 = ¹/₂ (x₁(y₂ - y₃) + x₂(y₃ - y₁) + x₃(y₁ - y₂))
⇒ 0 = ¹/₂ (-3(2 - 4) + 6(4 - 11) + k(11 - 2))
⇒ 0 = ¹/₂ (-3(-2) + 6(-7) + k(9))
⇒ 0 = ¹/₂ (6 - 42 + 9k)
⇒ 0 × 2= - 36 + 9k
⇒ 0 = 9k - 36
⇒ 9k = 36
⇒ k = 36/9
⇒ k = 4
∴ The value of k is 4.