05.
If sino + coso = m then value of (sino - Cose) is
Answers
Answered by
0
Answer:
Step-by-step explanation:
Sinθ + Cosθ = m.
//Square on both sides
=> (Sinθ + Cosθ)² = m²
=> Sin²θ + Cos²θ + 2SinθCosθ = m²
=> 1 + 2SinθCosθ = m²
=> 2SinθCosθ = m² - 1
=> SinθCosθ = 1/2(m² - 1)
Now to find value of Sinθ - Cosθ
(Sinθ - Cosθ)² = Sin²θ + Cos²θ - 2SinθCosθ
=> (Sinθ - Cosθ)² = 1 - 2 * 1/2(m² -1 )
=> (Sinθ - Cosθ)² = 1 - m² + 1
=> (Sinθ - Cosθ)² = 2 - m²
=> Sinθ - Cosθ = ±√(2 - m²).
Similar questions