06). If x= 30° verify that
cos 3x = 4cos^3 x - 3 cosx
Answers
Answered by
16
If x = 30°
verify that , cos 3 x = 4 cos³ x - 3 cos x.
value of cos 30° = √3 / 2
value of cos 90° = 0
substituting x = 30° in LHS
we will get,
LHS = cos 3 (30°) = cos 90° = 0
now, substituting x = 30° in RHS
RHS = 4 cos³*30° - 3 cos 30°
RHS = 4 (√3/2)³ - 3 ( √3 / 2 )
RHS = 4 ( 3√3 / 8 ) - (3√3 / 2)
RHS = ( 3√3/2) - (3√3/2)
RHS = 0
Answered by
9
Answer:
yes we can verify the given equation
Step-by-step explanation:
given
x=30°
let l.h.s= cos 3 x ⇒ cos(3*30)⇒ cos 90°=0
r.h.s=4 cos^3 x -3 cos x
⇒x=30°
⇒4 (cos 30°)^3-3 cos 30
=4(√3/2)^3- 3*(√3/2 )
=(4*√3/2*√3/2*√3/2) - 3√3/2
⇒3√3/2-3√3/2
=0
l.h.s=r.h.s=0
∴cos 3 x = 4 cos^3 x- 3 cos x is proved where x= 30°
Similar questions