Math, asked by simonesingh94679, 7 months ago

07 Find the values of'k so that the equation (k + 4)x+ (k + 1)x + 1 = 0 has equal roots​

Answers

Answered by aryan073
2

Answer:

(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(~_^)(~_^)(~_^)(~_^)(~_^)(~_^)(~_^)

\huge\mathfrak{\underline{\underline{\red{Answer:-}}}}

 \bigstar \displaystyle \boxed{ \tt{to \: find \: the \: value \: of \: k}}

 \red \bigstar \displaystyle \tt{equation = (k + 4)x^{2}  + (k + 1)x + 1 = 0}

 \purple \bigstar \displaystyle \tt{by \:  using \: determinant \: form}

 \pink \bigstar \displaystyle \tt{ {b}^{2} - 4ac  =  0........(if \: the \: roots \: are \: equal \: }

 \pink \bigstar \displaystyle \tt{ {(k + 1)}^{2}  - 4(k + 4)(1) = 0}

 \pink \bigstar \displaystyle \tt{ {k}^{2}  + 2k + 1 - 4k - 16 = 0}

 \pink \bigstar \displaystyle \tt{ {k}^{2}  - 2k - 15 = 0}

  \implies \small \boxed{ \sf \pink{by \: factorize}}

 \pink \bigstar \displaystyle \tt{ {k}^{2}   - 5k + 3k - 15 = 0}

 \pink \bigstar \displaystyle  \boxed{\tt \red {k = 5 \: and \: k =  - 3}}

Similar questions