08. Factorise 1 + 64x³
Answers
Answered by
1
Step-by-step explanation:
We know,
(a3+b3)=a3+a2b−a2b−ab2+ab2+b3
=(a3+a2b)−(a2b+ab2)+(ab2+b3)
=a2(a+b)−ab(a+b)+b2(a+b)
=(a+b)(a2−ab+b2)
Now, given, 1+64x3
=13+(4x)3
=(1+4x)(1−4x(1)+(4x2))
=(1+4x)(1−4x+16x2)
Answered by
1
Answer:
64x^3 + 1
》( 4x )^3 + ( 1 )^3
According to the identity ,
( a + b )^3 = ( a + b )( a^2 + ab + b^2 )
》( 4x + 1 )[ ( 4x )^2 - ( 4x )( 1 ) + ( 1 )^2 ]
》( 4x + 1 )( 16x^2 - 4x + 1 )
Similar questions