Math, asked by meghanavemuganti, 9 months ago

08. Find the sum to n terms of 3+33+333+.....

Answers

Answered by mathdude500
2

Answer:

\boxed{\sf \: 3 + 33 + 333 + 3333 + ... \: n \: terms = \dfrac{1}{3}\left[ \dfrac{10( {10}^{n}  - 1)}{9} - n \right] \: } \\

Step-by-step explanation:

Given series is

\sf \: 3 + 33 + 333 + 3333 + ... \: n \: terms \\  \\

\sf \: =  \:  3(1+ 11 + 111 + 1111 + ... \: n \: terms) \\  \\

\sf \: =  \:  \dfrac{3}{9} (9+ 99 + 999 + 9999 + ... \: n \: terms) \\  \\

\sf \: =  \:  \dfrac{1}{3}[(10 - 1) + (100 - 1) + (1000 - 1) + ... \: n \: terms) \\  \\

\sf \: =  \:  \dfrac{1}{3}[(10 + 100 + 1000 + ... \: n \: terms) - (1 + 1 + 1 + ... \: n \: terms)] \\  \\

We know,

Sum of n terms of a GP series having first term a and common ratio r is given by

\begin{gathered}\begin{gathered}\bf\: S_n = \begin{cases} &\sf{\dfrac{a( {r}^{n}  - 1)}{r - 1} }, \:  \: r \:  \ne \: 1  \\ \\ &\sf{\qquad \:  \: na, \:  \: r = 1} \end{cases}\end{gathered}\end{gathered} \\  \\

So, using these results, we get

\sf \:  =  \: \dfrac{1}{3}\left[ \dfrac{10( {10}^{n}  - 1)}{10 - 1} - n \times 1 \right] \\  \\

\sf \:  =  \: \dfrac{1}{3}\left[ \dfrac{10( {10}^{n}  - 1)}{9} - n \right] \\  \\

Hence,

\implies\sf \:  3 + 33 + 333 + 3333 + ... \: n \: terms = \dfrac{1}{3}\left[ \dfrac{10( {10}^{n}  - 1)}{9} - n \right] \\  \\

Similar questions