Math, asked by sanskarsinha52414, 9 months ago

09. If Sec - tan is a root of 3x2 + 5x + 1 = 0, then which of the following equation has the root seco + tan
O (A) x2 + 3x + 5 = 0​

Answers

Answered by hukam0685
0

Step-by-step explanation:

Given that:

*question is incomplete

Complete Question: If (secA- tanA) and(cosecA-cotA) are roots of 3x² + 5x + 1 = 0, then find the equation having roots (secA+ tanA) and(cosecA+cotA).

To find: Equation having roots (secA+ tanA) and(cosecA+cotA).

Solution:

Let

secA - tanA =  \alpha  \\  \\ then \\  \\ secA + tanA =  \frac{1}{ \alpha }  \\  \\

other root

cosecA - cotA=  \beta  \\  \\ then \\  \\ cosecA  + cotA=  \frac{1}{ \beta }  \\  \\

Equation 3x²+5x+1 has roots (secA- tanA) and(cosecA-cotA)

then the equation having roots (secA+tanA) and(cosecA+cotA) is

3 {\bigg( \frac{1}{x}\bigg )}^{2}  + 5\bigg( \frac{1}{x}\bigg ) + 1 = 0 \\  \\  \frac{3}{ {x}^{2} }  +  \frac{5}{x}  + 1 = 0 \\  \\ solve \\  \\  \frac{3 + 5x +  {x}^{2} }{ {x}^{2} }  = 0 \\  \\  {x}^{2}  + 5x + 3 = 0 \\  \\

Thus,

Equation is

\bold{\red{ {x}^{2}  + 5x + 3=0}} \\  \\

having roots (secA+tanA) and(cosecA+cotA)

Hope it helps you.

Similar questions