Math, asked by rashi4717, 20 days ago

■▪•°Solve this Equation :-

6x^2 - x - 2 = 0

No spam❌❌​

Answers

Answered by Jiya0071
5

6x^2−x−2=0

6x^2−4x+3x−2=0

2x(3x−2)+(3x−2)1=0

(2x+1)(3x−2)=0

2x+1 = 0 or 3x-2 = 0

x = -1/2 , x=2/3.

hope it helps

Answered by user0888
13

\Huge\text{$\boxed{x=\dfrac{2}{3}\text{ or }x=\dfrac{1}{2}}$}

\huge\text{[Topic: Quadratic equations]}

\Large\text{Three ways to solve quadratic equations}

\large\bullet\text{Factorization}

→ Factorization solves quadratic equations by finding the value of each factor equals zero.

\large\bullet\text{Completing the square}

→ This is also one of the ways to solve quadratic equations, but not commonly. If we solve \large\text{$ax^{2}+bx+c=0\ (a\neq0)$} using this method, we get the quadratic formula.

\large\bullet\text{Quadratic formula}

→ The quadratic formula uses the coefficient of each term to find the solutions. It is known by \large\text{$x=\dfrac{-b\pm\sqrt{b^{2}-4ac}}{2a}$}.

\huge\text{[Explanation]}

Let's solve by each method.

\large\bullet\text{Factorization}

\large\text{$\cdots\longrightarrow 6x^{2}-x-2=0$}

\large\text{$\cdots\longrightarrow (3x+2)(2x-1)=0$}

\large\text{$\cdots\longrightarrow 3x+2=0\text{ or }2x-1=0$}

\large\text{$\cdots\longrightarrow\boxed{x=-\dfrac{2}{3}\text{ or }x=\dfrac{1}{2}}$}

\large\bullet\text{Completing the square}

All quadratic equations are in the form of \large\text{$ax^{2}+bx+c=0\ (a\neq0)$}.

\large\text{$\cdots\longrightarrow a(x^{2}+\dfrac{b}{a}x+\dfrac{b^{2}}{4a^{2}})-\dfrac{b^{2}}{4a}+c=0$}

\large\text{$\cdots\longrightarrow a(x+\dfrac{b}{2a})^{2}-\dfrac{b^{2}}{4a}+c=0$}

\large\text{$\cdots\longrightarrow a(x+\dfrac{b}{2a})^{2}=\dfrac{b^{2}}{4a}-c$}

\large\text{$\cdots\longrightarrow a(x+\dfrac{b}{2a})^{2}=\dfrac{b^{2}-4ac}{4a}$}

\large\text{$\cdots\longrightarrow(x+\dfrac{b}{2a})^{2}=\dfrac{b^{2}-4ac}{4a^{2}}$}

\large\text{$\cdots\longrightarrow x+\dfrac{b}{2a}=\pm\sqrt{\dfrac{b^{2}-4ac}{4a^{2}}}$}

\large\text{$\cdots\longrightarrow x+\dfrac{b}{2a}=\pm{\dfrac{\sqrt{b^{2}-4ac}}{2a}}$}

\large\text{$\cdots\longrightarrow\boxed{x={\dfrac{-b\pm\sqrt{b^{2}-4ac}}{2a}}}$}

\large\bullet\text{Quadratic formula}

\begin{cases} &a=6 \\  &b=-1 \\  &c=-2 \end{cases}\rightarrow\boxed{\large{x=\dfrac{-b\pm\sqrt{b^{2}-4ac}}{2a}}}

\large\text{$\cdots\longrightarrow x=\dfrac{-(-1)\pm\sqrt{(-1)^{2}-4\cdot6\cdot(-2)}}{2\cdot6}$}

\large\text{$\cdots\longrightarrow x=\dfrac{1\pm\sqrt{49}}{12}$}

\large\text{$\cdots\longrightarrow x=\dfrac{1\pm7}{12}$}

\large\text{$\cdots\longrightarrow x=\dfrac{1+7}{12}\text{ or }x=\dfrac{1-7}{12}$}

\large\text{$\cdots\longrightarrow x=\dfrac{8}{12}\text{ or }x=-\dfrac{6}{12}$}

\large\text{$\cdots\longrightarrow\boxed{x=\dfrac{2}{3}\text{ or }x=-\dfrac{1}{2}}$}

In these ways, we solve quadratic equations.

Similar questions