(1,0) and (2,1) lie on the graph of x/a + y/b = 1 , then find the values of a and b.
Conditions to mark as brainliest
==>> Full solution
==>> Content quality
==>> With statements
==>> most important -->> Correct answer
Answers
Let the given points be A and B.
Given Equation is (x/a) + (y/b) = 1 ------ (1)
---------------------------------------------------------------------------------------------------------------
Given that A(1,0) lie on the given equation.
Put x = 1, y = 0 in (1), we get
= > (1/a) + (0/b) = 1
= > (1/a) = 1
= > a = 1.
-----------------------------------------------------------------------------------------------------------------
Similarly, B(2,1) lie on the given equation.
Put x = 2, y = 1 in (1), we get
= > (2/a) + (1/b) = 1
= > (2/1) + (1/b) = 1
= > 2 + (1/b) = 1
= > (1/b) = 1 - 2
= > (1/b) = -1
= > b = -1
---------------------------------------------------------------------------------------------------------------
Therefore, the value of a = 1 and b = - 1.
Hope this helps!
Answer:
a=1;b=-1
Step-by-step explanation:
Let the given points be A and B.
Given Equation is (x/a) + (y/b) = 1 ------ (1)
---------------------------------------------------------------------------------------------------------------
Given that A(1,0) lie on the given equation.
Put x = 1, y = 0 in (1), we get
= > (1/a) + (0/b) = 1
= > (1/a) = 1
= > a = 1.
-----------------------------------------------------------------------------------------------------------------
Similarly, B(2,1) lie on the given equation.
Put x = 2, y = 1 in (1), we get
= > (2/a) + (1/b) = 1
= > (2/1) + (1/b) = 1
= > 2 + (1/b) = 1
= > (1/b) = 1 - 2
= > (1/b) = -1
= > b = -1
---------------------------------------------------------------------------------------------------------------
Therefore, the value of a = 1 and b = - 1.
PLEASE MARK AS BRAINLIEST !