Math, asked by sunnysehgal6102, 9 days ago

| 1  1  1 |
| a  b  c | = (b-a) (c-a) (c-b) (a+b+c)
| a³  b³  c³ |​

Answers

Answered by mathdude500
6

Given Question :-

Prove that,

\begin{gathered}\sf \left | \begin{array}{ccc}1&1&1\\a&b&c\\ {a}^{3} & {b}^{3} &  {c}^{3} \end{array}\right | \end{gathered} = (a - b)(b - c)(c - a)(a + b + c) \\

\large\underline{\sf{Solution-}}

Consider,

\rm \: \begin{gathered}\sf \left | \begin{array}{ccc}1&1&1\\a&b&c\\ {a}^{3} & {b}^{3} &  {c}^{3} \end{array}\right | \end{gathered} \\

\boxed{\sf{  \:\rm \: OP \: C_2 \:  \to \: C_2 \:  -  \: C_1 \:  \: }} \\

\rm \: \begin{gathered}\sf \left | \begin{array}{ccc}1&0&1\\a&b - a&c\\ {a}^{3} & {b}^{3} -  {a}^{3}  &  {c}^{3} \end{array}\right | \end{gathered} \\

\boxed{\sf{  \:\rm \: OP \: C_3 \:  \to \: C_3 \:  -  \: C_1 \:  \: }} \\

\rm \: \begin{gathered}\sf \left | \begin{array}{ccc}1&0&0\\a&b - a&c - a\\ {a}^{3} & {b}^{3} -  {a}^{3}  &  {c}^{3} -  {a}^{3}  \end{array}\right | \end{gathered} \\

We know,

\boxed{\sf{  \:\rm \:  {x}^{3} -  {y}^{3} = (x - y)( {x}^{2} + xy +  {y}^{2}) \:  \: }} \\

\rm \: \begin{gathered}\sf \left | \begin{array}{ccc}1&0&0\\a&b - a&c - a\\ {a}^{3} &(b - a)( {b}^{2} + ba +  {a}^{2})&(c - a)( {c}^{2} + ca +  {a}^{2})  \end{array}\right | \end{gathered} \\

Take out b - a and c - a, common from second and third column respectively,

\rm \: = (b - a)(c - a) \begin{gathered}\sf \left | \begin{array}{ccc}1&0&0\\a&1&1\\ {a}^{3} & {b}^{2} + ba +  {a}^{2}& {c}^{2} + ca +  {a}^{2} \end{array}\right | \end{gathered} \\

\boxed{\sf{  \:\rm \: OP \: C_3 \:  \to \: C_3 \:  -  \: C_2 \:  \: }} \\

\rm \: = (b - a)(c - a) \begin{gathered}\sf \left | \begin{array}{ccc}1&0&0\\a&1&0\\ {a}^{3} & {b}^{2} + ba +  {a}^{2}& {c}^{2} + ca - {b}^{2} - ba \end{array}\right | \end{gathered} \\

On expanding along Row 1, we get

\rm \: =  \:(b - a)(c - a)( {c}^{2} + ac -  {b}^{2} - ab) \\

\rm \: =  \:(b - a)(c - a)[{c}^{2} -  {b}^{2} + ac - ab] \\

\rm \: =  \:(b - a)(c - a)[(c - b)(c + b) + a(c - b)] \\

\rm \: =  \:(b - a)(c - a)(c - b)(a + b + c) \\

can be rewritten as

\rm \: =  \:(a - b)(b - c)(c - a)(a + b + c) \\

Hence,

\begin{gathered}\sf \left | \begin{array}{ccc}1&1&1\\a&b&c\\ {a}^{3} & {b}^{3} &  {c}^{3} \end{array}\right | \end{gathered} = (a - b)(b - c)(c - a)(a + b + c) \\

\rule{190pt}{2pt}

Additional Information :-

1. The determinant value remains unaltered if rows and columns are interchanged.

2. The determinant value is 0, if two rows or columns are identical.

3. The determinant value is multiplied by - 1, if successive rows or columns are interchanged.

4. The determinant value remains unaltered if rows or columns are added or subtracted.

Answered by xxblackqueenxx37
43

 \: \: \sf \: LHS =  \left | \begin{array}{ccc}1 \:    \: \: \: 1 \:  \:   \: \: 1 \\ a \:   \: \:  \: b \:   \: \:  \: c \\  {a}^{3}  \:  \:   {b}^{3}  \:  \:  {c}^{3} \end{array}\right |

 \:\sf\:Applying C_2→C_2−C_1,C_3→C_3−C_1, we \:  get

 \: \sf =   \: \left | \begin{array}{ccc}1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 0 \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \: 0  \\ a \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: \:  \: b - a \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: c - a \\  {a}^{3}\:  \:  \:  \:  \:  \:  \:  \ \:  \:  \:  \:  \:   {b}^{ 3}  -  {a}^{3 } \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {c}^{3}  -  {a}^{3}  \end{array}\right |

 \: \sf \: Taking  \: out (b - a), (c - a) common \:  from C_2 and C_3 respectively, we \:  get

 \: \: \:  = (b - a)(c - a)\left | \begin{array}{ccc}1 \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:   \:  \:  \:  \:  \: \: \: 0 \:  \:  \:  \:  \:  \:  \:   \:  \:   \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \: 0 \\ a \:   \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \: 1 \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: \: 1 \\  {a}^{3} \:  \:  \:  \:  \:   \:  \:  \:  \:  \:   {b}^{2}  + ab +  {b}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  {c}^{2}  + ac +  {a}^{2}  \end{array}\right |

 \sf \: expanding \: along \: R_1 \: we \: get

 \sf \: =-(a - b)(c-a) [1(c²+ac+a²-b²-ab -a²)0+0]

 \sf \: =-(a - b)(c-a) (c² + ac -b²-ab)

 \sf \: =-(a−b)(c-a)-(b²-c²) - a(b-c)]

 \sf \:  =- (a-b) (c-a) [(b-c)(-b-c-a)]

 \sf \: =(a-b)(b-c)(c-a)(a+b+c)]

hence

 \: \: \sf \left | \begin{array}{ccc}1 \:    \: \: \: 1 \:  \:   \: \: 1 \\ a \:   \: \:  \: b \:   \: \:  \: c \\  {a}^{3}  \:  \:   {b}^{3}  \:  \:  {c}^{3} \end{array}\right | = (a−b)(b−c)(c−a)(a+b+c)

Similar questions