Math, asked by shubhamtomar, 1 year ago

[1-{1-(1-n)^-1}^-1]^-1 Simplify


nachiketathakur: write is mathematical form plz

Answers

Answered by pinquancaro
57

Answer:

[1-\{1-(1-n)^{-1}\}^{-1}]^{-1}=n

Step-by-step explanation:

Given : Expression [1-\{1-(1-n)^{-1}\}^{-1}]^{-1}

To find : Simplify the expression ?

Solution :

Step 1 -  Write the expression,

[1-\{1-(1-n)^{-1}\}^{-1}]^{-1}    

Step 2 - Solve the open bracket,

=[1-\{1-\frac{1}{1-n}}^{-1}]^{-1}

=[1-\{\frac{1-n-1}{1-n}}^{-1}]^{-1}

=[1-\{\frac{-n}{1-n}}^{-1}]^{-1}

Step 3 - Solve the curly bracket,

=[1-\frac{1-n}{-n}]^{-1}

=[\frac{n+1-n}{n}]^{-1}

=[\frac{1}{n}]^{-1}

Step 4 - Solve the big bracket,

=n

Therefore, [1-\{1-(1-n)^{-1}\}^{-1}]^{-1}=n

Answered by azaanghauri12
2

Answer:

evalute 1-[-1{-1+1×)}]

Similar questions