Math, asked by insertRani331, 1 month ago

[1-{1-(1-x^2) ^-1}^-1]^-1/2​

Answers

Answered by rakeshdubey33
1

Simplified value = x

Step-by-step explanation:

[ 1 - (1 - ( { \: {1 -  {x}^{2} )}^{ - 1} )}^{ - 1}   {]}^{ \frac{ - 1}{2} } \\  = </p><p>[ 1 - (1 -  { \:  \frac{1}{1 -  {x}^{2} }  )}^{ - 1}   {]}^{ \frac{ - 1}{2} }</p><p></p><p>

[ 1 - ( { \:  \frac{1 -  {x}^{2}  - 1}{1 -  {x}^{2} }  )}^{ - 1}   {]}^{ \frac{ - 1}{2} }

[ 1 - ( { \:  \frac{ -  {x}^{2} }{1 -  {x}^{2} }  )}^{ - 1}   {]}^{ \frac{ - 1}{2} }

[ 1 - ( { \:  \frac{1 -  {x}^{2} }{ - {x}^{2} }  )}   {]}^{ \frac{ - 1}{2} }

[ 1  +  ( { \:  \frac{1 -  {x}^{2} }{ {x}^{2} }  )}   {]}^{ \frac{ - 1}{2} }

[ { \:  \frac{ {x}^{2} + 1  -  {x}^{2} }{ {x}^{2} }  }   {]}^{ \frac{ - 1}{2} }

[ { \:  \frac{ 1 }{ {x}^{2} }  }   {]}^{ \frac{ - 1}{2} }

[ {  {x}^{ - 2}   }   {]}^{ \frac{ - 1}{2} }

 {x}^{ - 2 \times  \frac{ - 1}{2} }

 { x}^{1}

= x

Hence, the answer is = x.

Similar questions