1/1+2)+(1/1+2+3)+...+(1/1+2+3..n)=n-1/n+1
Answers
Answered by
0
Answer:
We have;
LHS = 1/1•2 + 1/2•3 + 1/3•4 + 1/4•5 + 1/5•6+................+ 1/n(n+1)
= (2-1)/1•2 + (3-2)/2•3 + (4-3)/3•4 +
(5-4)/4•5 + (6-5)/5•4 +............
............+ {(n+1)-n}/n•(n+1)
= (1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) +
(1/4 - 1/5) + (1/5 - 1/6) + ..........
...........+ {1/n - 1/(n+1)}
= 1 - 1/(n+1)
= (n+1-1)/(n+1)
= n/(n+1)
= RHS
Attachments:
Similar questions