1+(1+2)+(1+2+3)+(1+2+3+4)+(1+2+3+4+5+)+....+(1+2+3+4+....90)=? Find the sum of the series
Answers
Answered by
1
Answer:
1540
Step-by-step explanation:
1+(1+2)+ (1+2+3)+(1+2+3+4) +...20
terms. <br>
= 1+3+6+10 + 15 + 21 + 28 + 36 +m 45+55 + 66 + 78 + 91 + 105+ 120 + 136 + 153 + 171 + 190 + 210
<br>
= 1540
<br> Alternate method : <br>
1+(1+2) + (1+2 + 3) + ...n
th term of the series is <br>
1+2 +3 + 4 + ...n = (n(n+1))/(2)
<br> Sum of
n
terms of the series <br>
= sum t_n
<br>
= sum (n(n+1))/(2) rArr = (1)/(2) sum (n^(2) + n)
<br>
= (1)/(2) ( sum n^(2) + sumn)
<br>
= (1)/(2)[(n(n+1) (2n+1))/(6) + (n(n+1))/(2)]
<br>
= (n(n+1))/(4) ((2n+1)/(3) +1)
<br>
rArr (n(n+1)(2n+4))/(12) = (n(n+1)(n+2))/(6)
<br> If
n= 20
<br>
sum t_(20) = (20(21)(22))/(6)
<br>
rArr (10xx 21xx 22)/(3) = 1540
Similar questions