1/1×2 + 1/2×3 + 1/3×4 + ____ + 1/12×13
Answers
Answered by
1
Step-by-step explanation:
(1–1/2)=1/2
(1–1/2)(1–1/3)=1/2×2/3=1/3
(1–1/2)(1–1/3)(1–1/4)=1/2×2/3×3/4=1/3×3/4=1/4
(1–1/2)(1–1/3)(1–1/4)(1–1/5)=1/2×2/3×3/4×4/5=1/4×4/5=1/5
As you can see, the denominator of each term cancels out the numerator of the next term, so this series can be generalised to:
(1–1/2)(1–1/3)(1–1/4)…(1–1/n)=1/n
Which can also be written as:
1/2×2/3×3/4×…×((n-1)/n)=1/n
Which we could even be further generalised to:
a/b×b/c×c/d×…×m/n = a/n
Similar questions
Math,
17 days ago
Math,
17 days ago
Social Sciences,
17 days ago
Computer Science,
1 month ago
Art,
1 month ago
English,
9 months ago
English,
9 months ago