Math, asked by koratikorati9, 6 months ago

1/(1-2x)^2 (1-3x) resolve into partial Fractions​

Answers

Answered by pulakmath007
5

SOLUTION

TO DETERMINE

To resolve into partial Fractions

 \displaystyle \sf{ \frac{1}{ {( 1- 2x)}^{2}(1 - 3x) } }

EVALUATION

 \displaystyle \sf{ \frac{1}{ {( 1- 2x)}^{2}(1 - 3x) } }

 \displaystyle \sf{ =  \frac{3(1 - 2x) - 2(1 - 3x)}{ {( 1- 2x)}^{2}(1 - 3x) } }

 \displaystyle \sf{ =  \frac{3(1 - 2x) }{ {( 1- 2x)}^{2}(1 - 3x) }  -  \frac{ 2(1 - 3x)}{ {( 1- 2x)}^{2}(1 - 3x) } }

 \displaystyle \sf{ =  \frac{3}{ ( 1- 2x)(1 - 3x) }  -  \frac{ 2}{ {( 1- 2x)}^{2} } }

 \displaystyle \sf{ = 3 \times  \frac{1}{ ( 1- 2x)(1 - 3x) }  -  2 \times \frac{ 1}{ {( 1- 2x)}^{2} } }

 \displaystyle \sf{ = 3 \bigg[ \frac{3(1 - 2x) - 2(1 - 3x)}{ ( 1- 2x)(1 - 3x) }  \bigg] -  \frac{2}{ {( 1- 2x)}^{2} } }

 \displaystyle \sf{ = 3 \bigg[ \frac{3(1 - 2x) }{ ( 1- 2x)(1 - 3x) }   -  \frac{2(1 - 3x)}{ ( 1- 2x)(1 - 3x) }  \bigg] -  \frac{2}{ {( 1- 2x)}^{2} } }

 \displaystyle \sf{ = 3 \bigg[ \frac{3 }{ (1 - 3x) }   -  \frac{2}{ ( 1- 2x) }  \bigg] -  \frac{2}{ {( 1- 2x)}^{2} } }

 \displaystyle \sf{ =  \frac{9}{ (1 - 3x) }   -  \frac{6}{ ( 1- 2x) }  -  \frac{2}{ {( 1- 2x)}^{2} } }

 \displaystyle \sf{ =  \frac{9}{ (1 - 3x) }   +   \frac{ - 6}{ ( 1- 2x) }  +  \frac{ - 2}{ {( 1- 2x)}^{2} } }

FINAL ANSWER

 \displaystyle \sf{ \frac{1}{ {( 1- 2x)}^{2}(1 - 3x) } =  \frac{9}{ (1 - 3x) }   +   \frac{ - 6}{ ( 1- 2x) }  +  \frac{ - 2}{ {( 1- 2x)}^{2} } }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Decide the orderly relationship between 5/4 & 11/12 .

1️⃣ 5/4 > 11/12

2️⃣ 5/4 < 11/12

3️⃣ 5/4 = 11/12

https://brainly.in/question/37825417

2. What will be the third number in ascending order of the given numbers?

1️⃣ - 3/5

2️⃣ - 4/7

3️⃣ - 1/3

4️⃣ - 6 /11

https://brainly.in/question/39293464

Similar questions