Math, asked by shivamsanidhya, 1 month ago

:) (1+1)^3 - (1 - 1)^3​

Answers

Answered by DEBOBROTABHATTACHARY
0

(1+1)^3 - (1 - 1)^3

= 2^3 - (0)^3

= 8 - 0

= 8 (ans.)

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given

\red{\rm :\longmapsto\: {(1 + i)}^{3} -  {(1 - i)}^{3}}

Let Consider,

\rm :\longmapsto\: {(1 + i)}^{3}

We know that,

\boxed{ \bf{ \:  {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}}

So, using this identity, we get

\rm \:  =  \:  \:  {1}^{3} +  {i}^{3} + 3 \times 1 \times i(1 + i)

We know,

\boxed{ \bf{ \:  {i}^{3} =  -  \: i}}

\rm \:  =  \:  \: 1 - i + 3i + 3 {i}^{2}

We know,

\boxed{ \bf{ \:  {i}^{2} =  -  \: 1}}

So, using this, we get

\rm \:  =  \:  \: 1 + 2i - 3

\rm \:  =  \:  \:  - 2 + 2i

\bf\implies \: {(1 + i)}^{3}  =   - 2 + 2i -  -  - (1)

Now, Consider,

\rm :\longmapsto\: {(1  -  i)}^{3}

We know that

\boxed{ \bf{ \:  {(x  -  y)}^{3} =  {x}^{3}  -   {y}^{3}  -  3xy(x  -  y)}}

So, using this identity, we get

\rm \:  =  \:  \:  {1}^{3} -  {i}^{3} - 3 \times 1 \times i(1 - i)

We know,

\boxed{ \bf{ \:  {i}^{3} =  -  \: i}}

So, using this, we get

\rm \:  =  \:  \: 1  +  i  - 3i + 3 {i}^{2}

We know,

\boxed{ \bf{ \:  {i}^{2} =  -  \: 1}}

So, using this we get

\rm \:  =  \:  \: 1  -  2i - 3

\rm \:  =  \:  \:  - 2 -  2i

\bf\implies \: {(1  -  i)}^{3}  =   - 2  -  2i -  -  - (2)

So, Now consider,

\red{\rm :\longmapsto\: {(1 + i)}^{3} -  {(1 - i)}^{3}}

So, on substituting the values, we get

\rm \:  =  \:  \:  - 2 + 2i - ( - 2 - 2i)

\rm \:  =  \:  \:  - 2 + 2i  + 2 + 2i

\rm \:  =  \:  \: 4i

Hence,

  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{\boxed{ \bf{ \:  {(1 + i)}^{3} \:  -  \:  {(1 - i)}^{3} \:   =  \: 4i \: }}}

Additional Information :-

\boxed{ \bf{ \: i \:  =  \:  \sqrt{ - 1}}}

\boxed{ \bf{ \:  \frac{1}{i} =  - i}}

\boxed{ \bf{ \:  {i}^{4} = 1}}

\boxed{ \bf{ \:  {i}^{n} +  {i}^{n + 1}  +  {i}^{n + 2}  +  {i}^{n + 3}  = 0 \:  \: where \: n \: is \: natural \: number}}

Similar questions