Math, asked by yy9880, 10 months ago

1-1/3 log 10^64 solve this equatio

Answers

Answered by Anonymous
1

\huge\bf{Answer:-}

Refer the attachment.

Attachments:
Answered by RvChaudharY50
32

Question :------

we have to find value of (1 - 1/3log(base10)64) ?

Formula used :-----

  • nlog(a) = log(a)^n
  • (a^m)^n = a^mn
  • log(base10)4 = 0.602

solution :----------

1 -  \frac{1}{3} log_{10}(64)  \\  \\ 1 -  log_{10}(64)^{ \frac{1}{3} }  \\  \\ 1 -  log_{10}( {4}^{3} )^{ \frac{1}{3} } \\  \\ 1 -  log_{10}( {4}^{3 \times  \frac{1}{3} } ) \\  \\ 1 -  log_{10}(4) \\  \\ 1 - 0.602 \:  \\  \\  = 0.398

\red{\bold{Extra\:brainly\:knowledge:--}}

\orange{\bold{Product\:Rule\:Law:}}

loga (MN) = loga M + loga N

\pink{\bold{Quotient\:Rule\:Law:}}

loga (M/N) = loga M - loga N

\green{\bold{Power\:Rule\:Law:}}

IogaM^(n) = n Ioga M

Similar questions