Math, asked by abhradeepSaha, 1 month ago

1/1+a^m-n + 1/1+a^n-m​

Answers

Answered by SweetestBitter
23

\begin{gathered}\large {\boxed{\sf{\mid{\overline {\underline {\star ANSWER ::}}}\mid}}}\end{gathered}

To Find :

  • The value of 1/1+a^m-n + 1/1+a^n-m

Solution :-

 \frac{1}{1 +  {a}^{m - n} }  +  \frac{1}{1 +  {a}^{n - m} }  \\  \\   \sf{Taking  \: LCM} :   \\ \\  =  \frac{(1 +  {a}^{n - m}) + (1 + {a}^{m - n})   }{ (1 + {a}^{m - n})(1 +  {a}^{n - m}) }  \\  \\  =   \frac{2 +{a}^{n - m}  +  {a}^{m - n}}{1 +  {a}^{m - n} + {a}^{n - m} +  {a}^{m - n + n - m} } \\  \\  = \frac{2 +{a}^{n - m}  +  {a}^{m - n}}{1 +  {a}^{m - n} + {a}^{n - m} +  {a}^{0} }  \\  \\ = \frac{2 +{a}^{n - m}  +  {a}^{m - n}}{1 +  {a}^{m - n} + {a}^{n - m} +  1} \\  \\  = \frac{2 +{a}^{n - m}  +  {a}^{m - n}}{2 +  {a}^{m - n} + {a}^{n - m} } \\  \\  \star \:   \underline {\boxed{  = 1}} \:  \star

@SweetestBitter

Similar questions