Math, asked by aaliyanashath01, 9 months ago

(-1, 1) are the co-ordinates of the mid point of line AB joining the points A(-3,b) and B(1,b+4), then the value of b is​

Answers

Answered by Rohit18Bhadauria
8

Given:

(-1, 1) are the co-ordinates of the mid point of line segment AB joining the points A(-3,b) and B(1,b+4)

To Find:

  • Value of b

Mid-Point Formula

\setlength{\unitlength}{0.9 cm}}\begin{picture}(12,4)\thicklines\put(6,6){\line(1,0){5.5}}\put(5.6,5.9){$P$}\put(11.7,5.9){$Q$}\put(5.4,5.5){$(x_1\,,\,y_1)$}\put(11.4,5.5){$(x_2\,,\,y_2)$}\put(8.5,6){\circle*{0.2}}\put(8.3,6.3){$R$}\put(8,5.5){$(x\,,\,y)$}\put(7.2,6.3){$1$}\put(9.9,6.3){$1$}\put(11.7,5.9){$Q$}\end{picture}

If R divides the line segment joining points P and Q, internally in the ratio 1 : 1 .i.e., if R is the mid-point of PQ , then

\sf{(x,y)=\bigg(\dfrac{x_{1}+x_{2}}{2},\dfrac{y_{1}+y_{2}}{2}\bigg)}

Solution:

Let M be the mid-point of AB

\setlength{\unitlength}{0.9 cm}}\begin{picture}(12,4)\thicklines\put(6,6){\line(1,0){5.5}}\put(5.6,5.9){$A$}\put(11.7,5.9){$B$}\put(5.4,5.5){$(-3\,,\,b)$}\put(11.4,5.5){$(1\,,\,b+4)$}\put(8.5,6){\circle*{0.2}}\put(8.3,6.3){$M$}\put(8,5.5){$(-1\,,\,1)$}\put(7.2,6.3){$1$}\put(9.9,6.3){$1$}\put(11.7,5.9){$B$}\end{picture}

On applying Mid-Point Formula, we get

\longrightarrow\sf{(-1,1)=\bigg(\dfrac{-3+1}{2},\dfrac{b+b+4}{2}\bigg)}

\longrightarrow\sf{(-1,1)=\bigg(\dfrac{-2}{\: 2},\dfrac{2b+4}{2}\bigg)}

\longrightarrow\sf{(-1,1)=\bigg(\dfrac{-\cancel{2}}{\: \cancel{2}},\dfrac{\cancel{2}(b+2)}{\cancel{2}}\bigg)}

\longrightarrow\sf{(-1,1)=\big(-1,b+2\big)}

On comparing y-coordinate of both the sides, we get

⇒ 1= b+2

⇒ b+2= 1

⇒ b= 1-2

⇒ b= -1

Hence, the value of b is -1.

Similar questions