Math, asked by gaurimandal, 27 days ago

1/1+cos + 1/1-cos=2/sin² prove it.​

Answers

Answered by diwanamrmznu
7

★verifie:-

 \implies \:  \frac{1}{1 +  \cos \theta}  +  \frac{1}{1 -  \cos \theta }  =  \frac{2}{ \sin {}^{2} \theta  }  \\

★solution:-

 \pink{lhs}

 \implies \:  \frac{1}{1 +  \cos \theta } +  \frac{1}{1 -  \cos \theta}   \\  \\  \implies \:  \frac{1 -  \cos \theta  + 1 +  \cos \theta }{(1 +  \cos \theta)(1 -  \cos \theta) }  \\

we know that formula of

 \implies \star \pink{(a + b)(a - b) = a {}^{2}  - b {}^{2} } \\

 \implies \:  \frac{2}{1 -  \cos {}^{2} \theta  }  \\

we know that

 \implies \star \pink{1 -  \cos {}^{2}  \theta =  \sin {}^{2}  \theta }

 \implies \:  \frac{2}{ \sin {}^{2} \theta  }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \red{(hence \: proved \: )} \\

========================================

I hope it helps you

Similar questions