Math, asked by amritpal123345, 7 months ago

1/1+cos+1/1-cos=2cosec^2​

Answers

Answered by kaushik05
19

To prove :

 \star \:  \frac{1}{1 +  \cos( \alpha ) }  +  \frac{1}{1 -  \cos( \alpha ) }  = 2 { \csc }^{2}  \alpha  \\

LHS :

 \implies \:  \frac{1}{1 +  \cos( \alpha ) }  +  \frac{1}{1 -  \cos( \alpha ) }  \\  \\  \implies \:  \frac{1 -  \cos( \alpha ) + 1 +  \cos( \alpha )  }{ {1}^{2}  -  { \cos}^{2} \alpha  }  \\  \\  \implies \:  \frac{2}{ { \sin}^{2} \alpha  }  \\  \\  \implies \: 2 { \csc }^{2}  \alpha

LHS = RHS

Proved .

Formula :

sin² @ + cos² @= 1

• sin @ = 1/ csc@.

Answered by Anonymous
36

ɢɪᴠᴇɴ:-

  • \sf\dfrac{1}{1+cosA} + \dfrac{1}{1-cosA}
  • \sf2{cosec}^{2}A

ᴛᴏ ᴘʀᴏᴠᴇ:-

\sf\dfrac{1}{1+cosA} + \dfrac{1}{1-cosA} = 2{cosec}^{2}A

ᴘʀᴏᴏꜰ:-

LHS,

:\implies \: \: \: \: \: \: \:\sf \dfrac{1}{1+cosA} + \dfrac{1}{1-cosA}1+cosA

:\implies \: \: \: \: \: \: \:\sf \dfrac{1- cosA + 1 + cosA}{(1+cosA)(1-cosA)}

:\implies \: \: \: \: \: \: \:\sf \dfrac{2}{1 - {cos}^{2}A}

:\implies \: \: \: \: \: \: \:\sf \dfrac{2}{{sin}^{2}A}

:\implies \: \: \: \: \: \: \:\sf 2{cosec}^{2}A

ʜᴇɴᴄᴇ, ᴘʀᴏᴠᴇᴅ

━━━━━━━━━━━━━━━━━━━━━━

Identities used:-

  • \sf a^{2} - b^{2} = (a+b)(a-b)
  • \sf{sin}^{2}\theta + {cos}^{2}\theta = 1
  • \sf cosec\theta = \dfrac{1}{sin\theta}
Similar questions