Math, asked by ninanibasu15, 2 months ago

(1)
1 + cos A - sin^2A/
sin A (1 + cosA)=
cot A​

Answers

Answered by vanshikavikal448
55

To prove :-

  \bold{\frac{1 +   \cos A -  { \sin}^{2} A  }{ \sin A(1 +  \cos A)}  =  \cot A} \\

_________________________

Consider LHS

\bold{LHS =  \: \frac{1 +   \cos A -  { \sin}^{2} A  }{ \sin A(1 +  \cos A)}} \\

we know that,

  • sin²A = 1 - Cos²A

 \bold{ \implies LHS =   \: \frac{1 +   \cos A -  (1 -  { \cos}^{2}A)  }{ \sin A(1 +  \cos A)}}

and we know that,

  • 1-cos²A = (1-cosA)(1+cosA)

\bold{ \implies LHS =   \: \frac{1 +   \cos A - [(1 -  \cos A)(1 +  \cos A)]}{ \sin A(1 +  \cos A)}}

\bold{ \implies LHS =   \: \frac{1 +   \cos A[1 - (1 - cosA)] }{ \sin A(1 +  \cos A)}}

\bold{ \implies LHS =   \: \frac{1 +   \cos A( \cancel1  -  \cancel  1  +  cosA) }{ \sin A(1 +  \cos A)}}

\bold{ \implies LHS =   \: \frac{1 +   \cos A( cosA) }{ \sin A(1 +  \cos A)}}

\bold{ \implies LHS =   \: \frac{ \cancel{(1 +   \cos A)} cosA}{ \sin A \cancel{(1 +  \cos A)}}}

\bold{ \implies LHS =   \: \frac{cosA}{ \sin A}}

and we know that,

 \boxed {\bold{\frac{ \cos A}{ \sin A} =  \cot A}}

\bold{ \implies LHS =     \cot A =RHS }

hence, proved

Similar questions