Math, asked by learner10X, 11 months ago

1/(1-cos theta+2i sin theta)=?express this complex number in the form of a+ib(a, b are real)

Answers

Answered by Anonymous
11

\huge\bigstar\mathfrak\blue{\underline{\underline{SOLUTION}}}

Refer to the attachment.

hope it helps ☺️

Attachments:
Answered by silentlover45
9

\large\underline\mathrm{Questions:-}

  • \: \: \: \: \: \frac{1}{{({1} \: - \: Cos \theta)} \: + \: {2i} \: Sin \theta}

\large\underline\mathrm{Solutions:-}

\: \: \: \: \: \leadsto \: \: \frac{1}{{({1} \: - \: Cos \theta)} \: + \: {2i} \: Sin \theta}

\: \: \: \: \: \leadsto \: \: \frac{1}{{2} \: {Sin}^{2} \: \frac{\theta}{2} \: + \: {4i} \: {Sin} \: \frac{\theta}{2} \: Cos \:  \frac{\theta}{2}}

\: \: \: \: \: \leadsto \: \: \frac{1}{{2} \: {Sin} \: \frac{\theta}{2} \: {({Sin} \: \frac{\theta}{2} \: + \: {2i} \: Cos \:  \frac{\theta}{2})}} \: + \: \frac{{Sin} \: \frac{\theta}{2} \: + \: {2i} \: Cos \: \frac{\theta}{2}}{{Sin} \: \frac{\theta}{2} \: + \: {2i} \: Cos \: \frac{\theta}{2}}

\: \: \: \: \: \leadsto \: \: \frac{Sin \: \frac{\theta}{2} \: - \: {2i} \: Cos \frac{\theta}{2}}{{2} \: {Sin} \: \frac{\theta}{2} \: {({Sin}^{2} \: \frac{\theta}{2} \: + \: {4} \: {Cos}^{2} \frac{\theta}{2})}}

\: \: \: \: \: \leadsto \: \: \frac{Sin \: \frac{\theta}{2} \: - \: {2i} \: Cos \frac{\theta}{2}}{{2} \: {Sin} \: \frac{\theta}{2} \: {({1} \: + \: {3} \: {Cos}^{2} \frac{\theta}{2})}}

\: \: \: \: \: \leadsto \: \: A \: + \: iB \: \: = \: \:  \frac{1}{{2} \: {({1} \: + \: {3} \: {Cos}^{2} \frac{\theta}{2})}} \: - \: i \: \frac{Cot \: \frac{\theta}{2}}{{1} \: + \: {3} \: {Cos}^{2} \frac{\theta}{2}}

\large\underline{More \: Information:-}

  • \: \: \: \: \: {Cos}^{2} \theta \: + \: {Sin}^{2} \theta \: \: = \: \: {1}

  • \: \: \: \: \: {1} \: + \: {tan}^{2} \theta \: \: = \: \: {Sec}^{2} \theta

  • \: \: \: \: \: {1} \: + \: {Cot}^{2} \theta \: \: = \: \: {Cosec}^{2} \theta

  • \: \: \: \: \: tan \: {(x \: + \:  y)} \: \: = \: \: \frac{tan \: x \: + \: tan \: y}{{1} \: - \: tan \: x \: tan \: y}

  • \: \: \: \: \: tan \: {(x \: - \:  y)} \: \: = \: \: \frac{tan \: x \: - \: tan \: y}{{1} \: + \: tan \: x \: tan \: y}

  • \: \: \: \: \: Sin \: {2x} \: \: = \: \: {2} \: Sin \: x \: Cos \: x \: \: = \: \: \frac{{2} \: tan \: x}{{1} \: + \: {tan}^{2} \: x}

  • \: \: \: \: \: tan \: {2x} \: \: = \: \: \frac{{2} \: tan \: x}{{1} \: - \: {tan}^{2} \: x}

  • \: \: \: \: \: Cos \: x \: + \: Cos \: y \: \: = \: \: {2} \: Cos \: \frac{x \: + \: y}{2} \: Cos \: \frac{x \: - \: y}{2}

  • \: \: \: \: \: Sin \: x \: + \: Sin \: y \: \: = \: \: {2} \: Sin \: \frac{x \: + \: y}{2} \: Sin \: \frac{x \: - \: y}{2}

  • \: \: \: \: \: Sin \: x \: - \: Sin \: y \: \: = \: \: {2} \: Cos \: \frac{x \: + \: y}{2} \: Sin \: \frac{x \: - \: y}{2}
Similar questions