Math, asked by dhrubajyoti5, 11 months ago

1/1-costheta-isintheta​

Answers

Answered by umiko28
4

 \bf\ \frac{1}{(1 - cos \theta) - i \: sin \theta}  \\   \\ \bf\  \hookrightarrow  \frac{1(1 - cos \theta) + i \: sin \theta}{((1 - cos \theta) - i \: sin \theta)((1 - cos \theta) + i \: sin \theta)}  \\  \\  \bf\ \hookrightarrow \:  \frac{(1 - cos \theta) + i \: sin \theta}{(  {1 - cos \theta})^{2}  -  {(i \: sin \theta)}^{2} }  \\  \\  \bf\ \hookrightarrow \:  \frac{(1 - cos \theta) + i \: sin \theta}{ {1}^{2} +  {cos}^{2} \theta - 2sin \theta - (  { - sin}^{2}  \theta)   }  \:  \:  \:  \:  \: ( \therefore {i}^{2}  =  - 1) \\  \\  \bf\ \hookrightarrow \frac{(1 - cos \theta) + i \: sin \theta}{1 +  {sin}^{2}  \theta +   {cos}^{2} \theta - 2sin \theta  } \\  \\  \bf\pink{ \underline{ \bigstar \:  \:  {sin}^{2}  \theta +  {cos}^{2}  \theta = 1 \:  \:  \bigstar}} \\  \\  \bf\ \: \hookrightarrow \frac{(1 - cos \theta) + i \: sin \theta}{1 + 1 - 2sin \theta}  \\  \\ \hookrightarrow   \bf\  \frac{(1 - cos \theta) + i \: sin \theta}{2 - 2sin \theta}  \\  \\  \hookrightarrow  \bf\ \frac{(1 - cos \theta) + i \: sin \theta}{2(1 - cos \theta)} \\  \\  \large\underline{ \underline{ \red{  \mapsto \: \frac{i \: sin \theta}{2} }}} \\  \\   \bf\ \boxed{ \red{a + ib \: form  a   = 0\: and \: b =  \frac{sin \theta}{2}}}

\large\boxed{ \fcolorbox{blue}{pink}{hope \: it \: help \: you}}

Similar questions