Math, asked by satyajit3438, 1 year ago

1
1. If x = 3 + 2√2, then find the value of √x-1/√x​

Answers

Answered by mysticd
1

Answer:

\sqrt{x}-\frac{1}{\sqrt{x}}=±2

Step-by-step explanation:

 i) x = 3+2\sqrt{2}\:---(1)

ii) \frac{1}{x}=\frac{1}{3+2\sqrt{2}}\\=\frac{3-2\sqrt{2}}{(3+2\sqrt{2})(3-2\sqrt{2})}\\=\frac{3-2\sqrt{2}}{3^{2}-(2\sqrt{2})^{2}}\\=\frac{3-2\sqrt{2}}{9-8}\\=3-2\sqrt{2}\:--(2)

iii)x+\frac{1}{x}\\=3+2\sqrt{2}+3-2\sqrt{2}\\=6\:---(3)

Now,\\\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2}\\=x+\frac{1}{x}-2\\=6-2\\=4

\implies \sqrt{x}-\frac{1}{\sqrt{x}}=\sqrt{4}=±2

Therefore,.

\sqrt{x}-\frac{1}{\sqrt{x}}=±2

•••♪

Similar questions