Math, asked by ramanjaenyulu, 7 months ago

1/1+loga *bc +1/1+logb*ca +1/1+logc*ab​

Answers

Answered by varinderpaul788
1

Answer:

1/1+loga *bc +1/1+logb*ca +1/1+logc*ab

Answered by divyanshi00992
3

Option 2 is correct.

Step-by-step explanation:

To find value of expression: \frac{1}{1+log_a\:bc}+\frac{1}{1+log_b\:ca}+\frac{1}{1+log_c\:ab}

1+log

a

bc

1

+

1+log

b

ca

1

+

1+log

c

ab

1

We use the following result,

log_c\:x=\frac{log\:x}{log\:c}\:and\:log\,xy=\log\,x+log\,ylog

c

x=

logc

logx

andlogxy=logx+logy

Consider,

\frac{1}{1+log_a\:bc}+\frac{1}{1+log_b\:ca}+\frac{1}{1+log_c\:ab}

1+log

a

bc

1

+

1+log

b

ca

1

+

1+log

c

ab

1

\implies\frac{1}{1+\frac{log\,bc}{log\,a}}+\frac{1}{1+\frac{log\,ca}{log\,b}}+\frac{1}{1+\frac{log\,ab}{log\,c}}⟹

1+

loga

logbc

1

+

1+

logb

logca

1

+

1+

logc

logab

1

\implies\frac{log\,a}{log\,a+log\,bc}+\frac{log\,b}{log\,b+log\,ca}+\frac{log\,c}{log\,c+log\,ab}⟹

loga+logbc

loga

+

logb+logca

logb

+

logc+logab

logc

\implies\frac{log\,a}{log\,a+log\,b+log\,c}+\frac{log\,b}{log\,b+log\,c+log\,a}+\frac{log\,c}{log\,c+log\,a+log\,b}⟹

loga+logb+logc

loga

+

logb+logc+loga

logb

+

logc+loga+logb

logc

\implies\frac{log\,a+log\,b+log\,c}{log\,b+log\,c+log\,a}⟹

logb+logc+loga

loga+logb+logc

\implies1⟹1

Therefore, Option 2 is correct

Similar questions