Math, asked by kevinkaria1, 1 year ago

1/(1 + loga bc) + (1 + logb ca) + (1 + logc ab)
(1) 0
(2) 1
(3) abc
(4) 1/abc

Attachments:

Answers

Answered by aquialaska
109

Answer:

Option 2 is correct.

Step-by-step explanation:

To find value of expression:  \frac{1}{1+log_a\:bc}+\frac{1}{1+log_b\:ca}+\frac{1}{1+log_c\:ab}

We use the following result,

log_c\:x=\frac{log\:x}{log\:c}\:and\:log\,xy=\log\,x+log\,y

Consider,

\frac{1}{1+log_a\:bc}+\frac{1}{1+log_b\:ca}+\frac{1}{1+log_c\:ab}

\implies\frac{1}{1+\frac{log\,bc}{log\,a}}+\frac{1}{1+\frac{log\,ca}{log\,b}}+\frac{1}{1+\frac{log\,ab}{log\,c}}

\implies\frac{log\,a}{log\,a+log\,bc}+\frac{log\,b}{log\,b+log\,ca}+\frac{log\,c}{log\,c+log\,ab}

\implies\frac{log\,a}{log\,a+log\,b+log\,c}+\frac{log\,b}{log\,b+log\,c+log\,a}+\frac{log\,c}{log\,c+log\,a+log\,b}

\implies\frac{log\,a+log\,b+log\,c}{log\,b+log\,c+log\,a}

\implies1

Therefore, Option 2 is correct.

Answered by Aditiiiiiiiiiii
33

Answer:

1

Step-by-step explanation:

...............................

Attachments:
Similar questions