(1-1/n)+(1-2/n)+(1-3/n)+....upto n terms=?
Answers
Answered by
20
We have to find sum of given series :-
=> (1-1/n)+(1-2/n)+(1-3/n)+...upto n terms
=> 1+1+1... n times + ( - 1/n -2/n -3/n...n/n )
=> n - (1/n + 2/n +...n/n )
=> n - [(1+2+3...n)/(n)]
=> n - [ n(n+1)/2n]
=> n - [ (n+1)/2]
=> [2n - (n+1)] /2
=> (n-1)/2
Answer :-
(1-1/n)+(1-2/n)+(1-3/n)+...upto n terms = (n-1)/2
Answered by
83
★GIVEN:-
★TO FIND:-
- Sum upto n terms.
★FORMULA USED:-
★SOLUTION:-
So,
(1-1/n)+(1-2/n)+(1-3/n)+....upto n terms= n-1/2 .
Similar questions