Math, asked by laxmimku, 3 months ago

(1-1/n)+(1-2/n)+(1-3/n)+....upto n terms=?

Answers

Answered by Asterinn
20

We have to find sum of given series :-

=> (1-1/n)+(1-2/n)+(1-3/n)+...upto n terms

=> 1+1+1... n times + ( - 1/n -2/n -3/n...n/n )

=> n - (1/n + 2/n +...n/n )

=> n - [(1+2+3...n)/(n)]

=> n - [ n(n+1)/2n]

=> n - [ (n+1)/2]

=> [2n - (n+1)] /2

=> (n-1)/2

Answer :-

(1-1/n)+(1-2/n)+(1-3/n)+...upto n terms = (n-1)/2

Answered by diajain01
83

{\boxed{\underline{\tt{\orange{Required  \: Answer:-}}}}}

★GIVEN:-

  •  \displaystyle \sf{a = 1- \frac{1}{n} }

  •  \displaystyle \sf{d = 1 -  \frac{2}{n}  - 1 +  \frac{1}{n} }

★TO FIND:-

  • Sum upto n terms.

★FORMULA USED:-

  •  \displaystyle \sf{Sum =  \frac{n}{2} (2a + (n - 1)d)}

★SOLUTION:-

 \displaystyle \sf{Sum =  \frac{n}{2} (2a + (n - 1)d)}

⇢ \displaystyle \sf{Sum =  \frac{n}{2} (2 \frac{(n - 1)}{n}  + (n - 1) \frac{ - 1}{n} )} \\  \\ ⇢ \displaystyle \sf{ \frac{n}{2} ( \frac{2(n - 1) - (n - 1)}{n} )} \\  \\ ⇢ \displaystyle \sf{ \frac{ \cancel{n}}{2} \frac{(n - 1)}{ \cancel{n}}  } \\  \\ ⇢ \displaystyle \sf{ \boxed{ \underline{ \pink{ \frac{n - 1}{2} }}}}

So,

(1-1/n)+(1-2/n)+(1-3/n)+....upto n terms= n-1/2 .

Similar questions