1
х
1. Problem: If f:R\{0} → R is defined by f(x) = x+- then prove that
(f (x)) = f (x?) + f (1).
Answers
Answer:
I hope it will help you
Explanation:
[−12,12][-12,12]
(−1,1)−{0}(-1,1)-{0}
R−[−12,12]R-[-12,12]
R−[−1,1]R-[-1,1]
Answer :
A
Solution :
We have,f(x)=x1+x2,x∈Rf(x)=x1+x2,x∈R
Ist Method f(x) is an odd function and maximum occur at x = 1
From the graph it is clear that range of f(x) is
[−12,12][-12,12]
IInd Method f(x)=1x+1xf(x)=1x+1x
If x>0x>0, then by AM≥GMAM≥GM, we get x+1x≥2x+1x≥2
⇒1x+1x≤12⇒0<f(x)≤12⇒1x+1x≤12⇒0<f(x)≤12
If x<0x<0, then by AM≥GMAM≥GM, we get x+1x≤−2x+1x≤-2
⇒1x+1x≥−12⇒−12≤f(x)≤0⇒1x+1x≥-12⇒-12≤f(x)≤0
If x = 0, then f(x)=01+0=0f(x)=01+0=0
Thus, −12≤f(x)≤12-12≤f(x)≤12
Hence, f(x)∈[−12,12]f(x)∈[-12,12]
IIIrd Method
Let y=x1+x2⇒yx2−x+y=0y=x1+x2⇒yx2-x+y=0
∵x∈R, so D≥0∵x∈R, so D≥0
⇒1−4y2≥0⇒1-4y2≥0
⇒(1−2y)(1+2y)≥0⇒y∈[−12,12]⇒(1-2y)(1+2y)≥0⇒y∈[-12,12]
So, range is [−12,12][-12,12].