Math, asked by khushisuri018, 1 year ago

1/1+root2 + 1/root2+root3 + 1/root3+root4

Answers

Answered by parisasingh5
0

Answer:

6.72361463913

Step-by-step explanation:

Answered by shadowsabers03
4

\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+2}

First we may rationalise the denominator.

Consider  \dfrac{1}{1+\sqrt{2}}.

We multiply both the numerator and the denominator by  \sqrt2-1.

\dfrac{1(\sqrt2-1)}{(1+\sqrt2)(\sqrt2-1)}=\dfrac{\sqrt2-1}{(\sqrt2+1)(\sqrt2-1)}=\dfrac{\sqrt2-1}{2-1}=\sqrt2-1

Consider  \dfrac{1}{\sqrt2+\sqrt3}.

We multiply both the numerator and the denominator by  \sqrt3-\sqrt2.

\dfrac{1(\sqrt3-1\sqrt2)}{(\sqrt2+\sqrt3)(\sqrt3-\sqrt2)}=\dfrac{\sqrt3-\sqrt2}{(\sqrt3+\sqrt2)(\sqrt3-\sqrt2)}=\dfrac{\sqrt3-\sqrt2}{3-2}=\sqrt3-\sqrt2

Consider  \dfrac{1}{\sqrt3+2}.

We multiply both the numerator and the denominator by  2-\sqrt3.

\dfrac{1(2-\sqrt3)}{(\sqrt3+2)(2-\sqrt3)}=\dfrac{2-\sqrt3}{(2+\sqrt3)(2-\sqrt3)}=\dfrac{2-\sqrt3}{4-3}=2-\sqrt3

So,

\begin{aligned}&\frac{1}{1+\sqrt2}+\frac{1}{\sqrt2+\sqrt3}+\frac{1}{\sqrt3+2}\\ \\ \Longrightarrow\ \ &(\sqrt2-1)+(\sqrt3-\sqrt2)+(2-\sqrt3)\\ \\ \Longrightarrow\ \ &\sqrt2-1+\sqrt3-\sqrt2+2-\sqrt3\\ \\ \Longrightarrow\ \ &2-1\\ \\ \Longrightarrow\ \ &\Large\text{$\bold{1}$}\end{aligned}

Hence,  1  is the answer.

Similar questions