1/1-sin3x ??Domain and range??
Answers
Answer:
Hey there!!
__________
◆Given function is :
\begin{gathered}f(x) = \frac{1}{2 - sin3 x} \\\end{gathered}
f(x)=
2−sin3x
1
●For DOMAIN :
-----------------------
Function f(x) is not defined when
=> 2 - sin3x = 0
so , sin3x = 2 ---------(1)
but we know that range of sinx € [ -1, 1 ]
so maximum value of sin3x = 1
therefore sin3x ≠ 2 ( not possible)
=> 2 - sin3x ≠ 0 ------(2)
so from equation (2) we can se tha function is defined for all values of x
=> Domain € R
#FOR RANGE :
----------------------
\begin{gathered}we \: know \: that \: \\ - 1 \leqslant \sin(3x) \leqslant 1 \\\end{gathered}
weknowthat
−1⩽sin(3x)⩽1
now multiplying by -1 we get,
=> 1 ≥ - sin3x ≥ -1
adding 2 we get,
=> 2+1 ≥ 2 - sin3x ≥ 2-1
=> 3 ≥ 2-sin3x ≥ 1
now taking inverse we get,
\frac{1}{3} \leqslant \frac{1}{2 - \sin(3x) } \leqslant 1
3
1
⩽
2−sin(3x)
1
⩽1
so Range € [ ⅓ , 1 ]