Math, asked by Anonymous, 1 month ago

1/1 - sinA + 1/1 + sinA = 2 sec^2 (PROVE IT)

PLEASE HELPE ME.

Answers

Answered by CopyThat
21

Answer :-

We have :

\rightarrow \bold{\dfrac{1}{1-sinA}+\dfrac{1}{1+sinA}  }

Taking L.C.M :

\rightarrow \bold{\dfrac{(1+sinA)+(1-sinA)}{(1-sinA)(1+sinA)} }

We know :

⇒ (a - b)(a + b) = a² - b²

Since :

\rightarrow \bold{\dfrac{2}{(1)^2-(sin^2A)} }

We know :

⇒ sin²A + cos²A = 1

Since :

\rightarrow \bold{\dfrac{2}{cos^2A} }

We know :

⇒ cos A = 1/sec A

Hence :

\rightarrow \bold{2sec^2A}

∴ L.H.S = R.H.S, Hence proved !

Answered by Liam450
29

GIVEN THAT:-

 \frac{1}{1 -  \sin \: A  }  +  \frac{1}{1 +  \sin \: A }  =  2\sec ^{2} A

SOLUTION:-

LHS:-

 \frac{1}{1 -  \sin \: A } +  \frac{1}{ \sin \: A }

 \frac{1 +   \sin \: A   + 1 -  \sin \: A }{(1 -  \sin \: A)(1 +   \sin \: A) }

 \frac{2}{1 -  \sin^{2} A }

 \frac{2}{ \cos^{2} A }

 = 2 \sec^{2} A

LHS=RHS

HENCE PROVED!

_____________________________________________

Similar questions