Math, asked by devyanii19, 10 months ago

√1/1-t + √1-t/ = 13/6 find t​

Answers

Answered by sanketj
1

for the given equation to be real,

t ≤ 1 or t ≤ 0

or √(1 - t) would be imaginary i.e. 1 - t < 0

 \sqrt{ \frac{1}{1 - t} }  +  \sqrt{1 - t}  =  \frac{13}{6}  \\  \frac{1}{ \sqrt{1 - t} }  +  \sqrt{1 - t}  =  \frac{13}{6}  \\  \frac{1 + ( \sqrt{1 -t })( \sqrt{1 - t}  )}{ \sqrt{1 - t} }  =  \frac{13}{6 }  \\  \frac{1 + 1 - t}{ \sqrt{1 - t} }  =  \frac{13}{6}  \\ 2 - t =  \frac{13}{6}  \sqrt{1 - t}  \\  {(2 - t)}^{2}  = {( \frac{13}{6} \sqrt{1 - t}  )}^{2}  \\ 4 +  {t}^{2}  - 4t =  \frac{169}{36}  \times 1 - t \\  36 {t}^{2}  - 144t + 144 = 169 - 169t \\ 36 {t}^{2}  - 144t + 169t + 144 - 169 = 0 \\ 36 {t}^{2}   + 25t - 25 = 0 \\ 36 {t}^{2}  + 45t - 20t - 25 = 0 \\ 9t(4t + 5) - 5(4t + 5) = 0 \\ (9t - 5)(4t + 5) = 0 \\  \\ 9t - 5 = 0 \\ or \\ 4t + 5 = 0 \\  \\ t =  \frac{5}{9}  \\ or \\ t =  \frac{ - 5}{4}  \\  \\ here \: t =  \frac{5}{9}  \: or \:  \frac{ - 5}{4} satisfy \\  \\ t \leqslant 0 \: and \: t  \leqslant 1

hence, both the values are valid

Hence, t = 5/9 or -5/4

Similar questions