1/(1+tan^2a) +1/(1+cot^2a)=1
Answers
Answered by
1
Step-by-step explanation:
LHS
1 / (1 + tan²A) + 1 / (1 + cot²A)
=> 1 / sec²A + 1 / cosec²A
= (sec² + cosec²) / sec²A•cosec²A
= (1/cos²A + 1/cos²A ) ÷ 1/sin²A•cos²A
= ( cos²A + sin²A )/ sin²A•cos²A × sin²A•cos²A
= 1
LHS = RHS
Hence proved
Attachments:
Similar questions