1/1 + tan²A + 1/1 + cot²A = 1 (Prove it)
Answers
Answered by
12
EXPLANATION.
⇒ 1/(1 + tan²A) + 1/(1 + cot²A) = 1.
As we know that,
From L.H.S.
⇒ 1/(1 + tan²A) + 1/(1 + cot²A).
As we know that,
Formula of :
⇒ 1 + tan²θ = sec²θ.
⇒ 1 + cot²θ = cosec²θ.
Using this formula in the equation, we get.
⇒ 1/(sec²A) + 1/(cosec²A).
⇒ cos²A + sin²A.
⇒ 1.
Hence proved.
MORE INFORMATION.
Trigonometric ratios of multiple angles.
(1) = sin2θ = 2sinθ.cosθ = 2tanθ/1 + tan²θ.
(2) = cos2θ = cos²θ - sin²θ = 2cos²θ - 1 = 1 - 2sin²θ = 1 - tan²θ/1 + tan²θ.
(3) = tan2θ = 2tanθ/1 - tan²θ.
(4) = sin3θ = 3sinθ - 4sin³θ.
(5) = cos3θ = 4cos³θ - 3cosθ.
(6) = tan3θ = 3tanθ - tan³θ/1 - 3tan²θ.
Answered by
13
Answer :-
We have :
We know :
⇒ 1 + tan²A = sec²A
⇒ 1 + cot²A = cosec²A
Hence :
We know :
⇒ sec A = 1/cos A
⇒ cosec A = 1/sin A
Hence :
We know :
⇒ cos²A + sin²A = 1
∴ L.H.S = R.H.S, Hence proved !
Similar questions