1
(1 + xb−a + xc−a)
+
1
(1 + xa−b + xc−b)
+ 1
(1 + xb−c + xa−c)
=1 prove that
Answers
Answered by
0
Answer:
1
Step-by-step explanation:
⇒
1+x
b−a
+x
c−a
1
+
1+x
a−b
+x
c−b
1
+
1+x
a−c
+x
b−c
1
⇒
1+
x
a
x
b
+
x
a
x
c
1
+
1+
x
b
x
a
+
x
b
x
c
1
+
1+
x
c
x
a
+
x
c
x
b
1
⇒
x
a
+x
b
+x
c
x
a
+
x
b
+x
a
+x
c
x
b
+
x
c
+x
a
+x
b
x
c
⇒
x
a
+x
b
+x
c
1
(x
a
+x
b
+x
c
)
⇒
x
a
+x
b
+x
c
x
a
+x
b
+x
c
⇒x
0
=1
Answered by
3
Answer:
⇒
1+x
b−a
+x
c−a
1
+
1+x
a−b
+x
c−b
1
+
1+x
a−c
+x
b−c
1
⇒
1+
x
a
x
b
+
x
a
x
c
1
+
1+
x
b
x
a
+
x
b
x
c
1
+
1+
x
c
x
a
+
x
c
x
b
1
⇒
x
a
+x
b
+x
c
x
a
+
x
b
+x
a
+x
c
x
b
+
x
c
+x
a
+x
b
x
c
⇒
x
a
+x
b
+x
c
1
(x
a
+x
b
+x
c
)
⇒
x
a
+x
b
+x
c
x
a
+x
b
+x
c
⇒x
0
=1
Similar questions