Math, asked by padmavathisrp1, 6 months ago

1/11in decimal form and decimal expansion​

Answers

Answered by DIVYANSHI554
2

Answer:

0.09 bar = decimal form

non-terminating recurring decimal expansion

Step-by-step explanation:

hope this may help you

please mark me as brainliest answer

Answered by BlastOracle
2

\huge\bold{\mathtt{\red{ A{\pink{ N{\green{ S{\blue{ W{\purple{ E{\orange{ R}}}}}}}}}}}}}

Decimal form of 1/11

 \frac{1}{11} =  \frac{100}{11}  \times  \frac{1}{100}

 = (9 +  \frac{1}{11} ) \times  \frac{1}{100}

 =  \frac{9}{100}  \times  \frac{1}{1100}

 \frac{1}{11}  -  \frac{9}{100}  =  \frac{9}{1100}

____________________________________

Fraction with denominator 10000

 \frac{1}{11}  =  \frac{10000}{11} \times  \frac{1}{10000}

 \dfrac{1}{11}  -  \frac{909}{10000}  =  \frac{1}{110000}

  • The Fraction with denominator 10000 and closer to 1/11

 \dfrac{1}{11}  =  \dfrac{9}{100}  =  \dfrac{1}{1100}

 \frac{1}{11}  =  \frac{909}{1000} =  \frac{1}{110000}

  \frac{1}{11}  = \frac{9009}{1000000}  =  \frac{1}{11000000}

_____________________________

 \frac{9}{100}  = 0.09

 \frac{909}{10000}  = 0.0909

 \frac{9009}{1000000}  = 0.090909

Then,

 \frac{1}{11}  = 0.0909090909...........

Similar questions