Math, asked by padalaprasad123123, 6 months ago

1. 1x –y +3z =5 ; 4x+2y-z =0 ; -x +3y + z = 5 by using Cramer’s rule and Matrix

inversion method.​

Answers

Answered by ashishks1912
23

GIVEN :

1x –y +3z =5 ; 4x+2y-z =0 ; -x +3y + z = 5 by using Cramer’s rule and Matrix

inversion method.​

TO FIND :

The values of x,y and z by using Cramer’s rule and Matrix inversion method.​

SOLUTION :

Given equations are

1x –y +3z =5 ;

4x+2y-z =0 ;

-x +3y + z = 5

Now solving the given equations by Cramer's rule :

D=\left|\begin{array}{ccc}1&-1&3\\4&2&-1\\-1&3&1\end{array}\right|

= 1(2+3)+1(4-1)+3(12+2)

= 5+3+42

=50

D=50

The formula is x=\frac{D_{x}}{D} , y=\frac{D_{y}}{D} and z=\frac{D_{z}}{D} provided D\neq 0

Now x=\frac{D_{x}}{D}

x=\frac{\left|\begin{array}{ccc}5&-1&3\\0&2&-1\\5&3&1\end{array}\right|}{50}

=\frac{5(2+3)+1(0+5)+3(0-10)}{50}

=\frac{25+5-30}{50}

=\frac{0}{50}

= 0

⇒ x=0

Now y=\frac{D_{y}}{D}

y=\frac{\left|\begin{array}{ccc}1&-5&3\\4&20&-1\\-1&5&1\end{array}\right|}{50}

=\frac{1(0+5)-5(4-1)+3(20+0)}{50}

=\frac{5-15+60}{50}

=\frac{50}{50}

= 1

⇒ y=1

Now z=\frac{D_{z}}{D}

z=\frac{\left|\begin{array}{ccc}1&-1&5\\4&2&0\\-1&3&5\end{array}\right|}{50}

=\frac{1(10-0)+1(20+0)+5(12+2)}{50}

=\frac{10+20+70}{50}

=\frac{100}{50}

= 2

⇒ z=2

∴ the values are x=0 , y=1 and z=2

Solving the given equations by Matrix inversion method :

1x –y +3z =5 ;

4x+2y-z =0 ;

-x +3y + z = 5

It is of the form AX=B where

A=\left[\begin{array}{ccc}1&-1&3\\4&2&-1\\-1&3&1\end{array}\right] ,     B=\left[\begin{array}{c}5\\0\\5\end{array}\right]

AX=B

X=A^{-1}B

A=\left|\begin{array}{ccc}1&-1&3\\4&2&-1\\-1&3&1\end{array}\right|

= 1(2+3)+1(4-1)+3(12+2)

= 5+3+42

=50

|A|=50

The formula for A^{-1}=\frac{adjA}{|A|}

adjA=\left[\begin{array}{ccc}5&10&-5\\-3&4&13\\14&2&6\end{array}\right]

A^{-1}=\frac{\left[\begin{array}{ccc}5&10&-5\\-3&4&13\\14&2&6\end{array}\right]}{50}

Substituting in X=A^{-1}B we get,

\left[\begin{array}{c}x\\y\\z\end{array}\right]=\frac{\left[\begin{array}{ccc}5&10&-5\\-3&4&13\\14&2&6\end{array}\right]}{50}\times \left[\begin{array}{c}5\\0\\5\end{array}\right]

\left[\begin{array}{c}x\\y\\z\end{array}\right]=\frac{\left[\begin{array}{c}25+0-25\\-15+0+65\\70+0+30\end{array}\right]}{50}

=\frac{\left[\begin{array}{c}0\\50\\100\end{array}\right]}{50}

=\left[\begin{array}{c}0\\1\\2\end{array}\right]

\left[\begin{array}{c}x\\y\\z\end{array}\right]=\left[\begin{array}{c}0\\1\\2\end{array}\right]

∴ the values are x=0 , y=1 and z=2

Similar questions