1
2.08g of zinc displaced 6.9119g of silver from a solution of silver nitrate. If the equivalent weight of
silver is 108, then the equivalent weight of zinc is
a) 65.00
b) 32.5
c) 64.50
d) 31.50
Answers
Answered by
11
By law of equivalence, the no. of gram equivalence of each reactant should be same, i.e.,
In this question,
- given mass of silver,
- given mass of zinc,
- equivalent weight of silver,
Then equivalent weight of zinc will be,
Hence (b) is the answer.
Answered by
1
By law of equivalence, the no. of gram equivalence of each reactant should be same, i.e.,
\tt{\longrightarrow e_1=e_2}⟶e
1
=e
2
\tt{\longrightarrow \dfrac{W_1}{E_1}=\dfrac{W_2}{E_2}}⟶
E
1
W
1
=
E
2
W
2
\tt{\longrightarrow E_2=\dfrac{W_2E_1}{W_1}}⟶E
2
=
W
1
W
2
E
1
In this question,
given mass of silver, \tt{W_1=6.9119\ g}W
1
=6.9119 g
given mass of zinc, \tt{W_2=2.08\ g}W
2
=2.08 g
equivalent weight of silver, \tt{E_1=108\ g\,eq^{-1}}E
1
=108 geq
−1
Then equivalent weight of zinc will be,
\tt{\longrightarrow E_2=\dfrac{W_2E_1}{W_1}}⟶E
2
=
W
1
W
2
E
1
\tt{\longrightarrow E_2=\dfrac{2.08\times108}{6.9119}}⟶E
2
=
6.9119
2.08×108
\tt{\longrightarrow\underline{\underline{E_2=32.5\ g\,eq^{-1}}}}⟶
E
2
=32.5 geq
−1
Hence (b) is the answer.
Similar questions