Math, asked by segodirachel, 10 months ago

1^2=1
1^2+2^2=5
1^2+2^2+3^2=14
1^2+2^2+3^2+4^2=30
1^2+2^2+3^2+4^2+....+n^2=an^3+bn^2+n/6. work out the values of a and b

Answers

Answered by RvChaudharY50
52

Fᴏʀᴍᴜʟᴀ ᴜsᴇᴅ :-

  • The sum of squares of the first n natural numbers is :- [ n(n + 1)(2n + 1) ] / 6

Sᴏʟᴜᴛɪᴏɴ :-

→ [ n(n + 1)(2n + 1) ] / 6

Lets Solve Numerator Part,

n(n + 1)(2n + 1)

→ (n² + n)(2n + 1)

→ n²(2n + 1) + n(2n + 1)

→ 2n³ + n² + 2n² + n

→ 2n³ + 3n² + n

So ,

→ 1² +2² +3² +4² +....+n² = (2n³ + 3n² + n) / 6

Comparing now , we get,

(2n³ + 3n² + n) / 6 = ( an³+bn²+n ) / 6

Hence,

a = 2 (Ans.)

→ b = 3 (Ans.)

_______________

Check The formula :-

1² = [ 1 * 2 * 3 ] / 6 = 6/6 = 1

→ 1² + 2² = (2 * 3 * 5) / 6 = 5

→ 1² + 2² + 3² = (3 * 4 * 7) / 6 = 14

→ 1² + 2² + 3² + 4² = (4 * 5 * 9) / 6 = 30

So,

1² + 2² + 3² + 4² + ______ n² = (2n³ + 3n² + n) / 6 .


StarrySoul: Perfect! ❤️
Anonymous: Awesome :)
Answered by AdorableMe
90

GIVEN SEQUENCE :-

1² = 1

1² + 2² = 5

1² + 2² + 3² = 14

1² + 2² + 3² + 4² = 30

TO OPERATE :-

1² + 2² + 3² + 4² + ..... + n² = an³ + bn2 + n/6

TO FIND THE VALUE OF :-

a and b.

SOLUTION :-

We know,

sum of first n natural numbers is :

\displaystyle{\sf{\frac{n(n+1)}{2} }}

And, the sum of the squares of the first n natural numbers is :

\displaystyle{\sf{\frac{n(n+1)(2n+1)}{6} }}

We are required to find the sum of squares of first n natural numbers. So, on solving, we get :

\displaystyle{\sf{\frac{(n^2+n)(2n+1)}{6} }}\\\\\\\displaystyle{=\sf{\frac{2n^3+n^2+2n^2+n}{6} }}\\\\\\\displaystyle{=\sf{\frac{2n^3+3n^2+n}{6} }}

\textsf{Comparing it with}\ \displaystyle{\sf{\frac{an^3+bn^2+n}{6} }},\ \sf{we\ get\ :}

\Large\underline{\boxed{\boxed{a = 2}}}

\Large\underline{\boxed{\boxed{b = 3}}}

\rule{200}{3}


Anonymous: Nice
Similar questions