1^2=1
1^2+2^2=5
1^2+2^2+3^2=14
1^2+2^2+3^2+4^2=30
1^2+2^2+3^2+4^2+....+n^2=an^3+bn^2+n/6. work out the values of a and b
Answers
Fᴏʀᴍᴜʟᴀ ᴜsᴇᴅ :-
- The sum of squares of the first n natural numbers is :- [ n(n + 1)(2n + 1) ] / 6
Sᴏʟᴜᴛɪᴏɴ :-
→ [ n(n + 1)(2n + 1) ] / 6
Lets Solve Numerator Part,
→ n(n + 1)(2n + 1)
→ (n² + n)(2n + 1)
→ n²(2n + 1) + n(2n + 1)
→ 2n³ + n² + 2n² + n
→ 2n³ + 3n² + n
So ,
→ 1² +2² +3² +4² +....+n² = (2n³ + 3n² + n) / 6
Comparing now , we get,
→ (2n³ + 3n² + n) / 6 = ( an³+bn²+n ) / 6
Hence,
→ a = 2 (Ans.)
→ b = 3 (Ans.)
_______________
Check The formula :-
→ 1² = [ 1 * 2 * 3 ] / 6 = 6/6 = 1
→ 1² + 2² = (2 * 3 * 5) / 6 = 5
→ 1² + 2² + 3² = (3 * 4 * 7) / 6 = 14
→ 1² + 2² + 3² + 4² = (4 * 5 * 9) / 6 = 30
So,
→ 1² + 2² + 3² + 4² + ______ n² = (2n³ + 3n² + n) / 6 .
GIVEN SEQUENCE :-
1² = 1
1² + 2² = 5
1² + 2² + 3² = 14
1² + 2² + 3² + 4² = 30
TO OPERATE :-
1² + 2² + 3² + 4² + ..... + n² = an³ + bn2 + n/6
TO FIND THE VALUE OF :-
a and b.
SOLUTION :-
We know,
✰ sum of first n natural numbers is :
✰ And, the sum of the squares of the first n natural numbers is :
We are required to find the sum of squares of first n natural numbers. So, on solving, we get :