Math, asked by vvvamsi143, 1 year ago

(1/√2+1)+(1/√3+√2)+(1/√4+√3a)+...........+(1/√a+√8)


amitnrw: Please rewrite question properly

Answers

Answered by MaheswariS
0

Answer:

=\frac{1}{\sqrt2+\sqrt1}+\frac{1}{\sqrt3+\sqrt2}+\frac{1}{\sqrt4+\sqrt3}.................+\frac{1}{\sqrt9+\sqrt8}=2

Step-by-step explanation:

Given;

\frac{1}{\sqrt2+\sqrt1}+\frac{1}{\sqrt3+\sqrt2}+\frac{1}{\sqrt4+\sqrt3}.................+\frac{1}{\sqrt{a}+\sqrt8}

By observation, each term is of form

\frac{1}{\sqrt{n+1}+\sqrt{n}}

Then, clearly a=8+1=9

\frac{1}{\sqrt2+\sqrt1}

=\frac{1}{\sqrt2+\sqrt1}.\frac{\sqrt2-\sqrt1}{\sqrt2-\sqrt1}

=\frac{\sqrt2-\sqrt1}{(\sqrt2)^2-(\sqrt1)^2}

=\frac{\sqrt2-\sqrt1}{2-1}

=\frac{\sqrt2-\sqrt1}{1}

=\sqrt2-\sqrt1

This implies,

\frac{1}{\sqrt2+\sqrt1}=\sqrt2-\sqrt1

similarly,

\frac{1}{\sqrt3+\sqrt2}=\sqrt3-\sqrt2

\frac{1}{\sqrt4+\sqrt3}=\sqrt4-\sqrt3

.

.

.

\frac{1}{\sqrt9+\sqrt8}=\sqrt9-\sqrt8

Now,

\frac{1}{\sqrt2+\sqrt1}+\frac{1}{\sqrt3+\sqrt2}+\frac{1}{\sqrt4+\sqrt3}.................+\frac{1}{\sqrta+\sqrt8}

=\frac{1}{\sqrt2+\sqrt1}+\frac{1}{\sqrt3+\sqrt2}+\frac{1}{\sqrt4+\sqrt3}.................+\frac{1}{\sqrt9+\sqrt8}

=(\sqrt2-\sqrt1)+(\sqrt3-\sqrt2)+(\sqrt4-\sqrt3)+..................+(\sqrt8-\sqrt7)+(\sqrt9-\sqrt8)

=(\sqrt2-\sqrt1)+(\sqrt3-\sqrt2)+(\sqrt4-\sqrt3)+..................+(\sqrt8-\sqrt7)+(\sqrt9-\sqrt8)

=\sqrt9-\sqrt1

=3-1

=2

Similar questions