Math, asked by mirnmoyeemgmailcom, 2 months ago

1/2 + 1/3 + 1/4 + 1/5 + 1/6 =?
Step by step method By lcm process Spams will be reported ​

Answers

Answered by ishanistha246
0

Answer:

Step-by-step explanation:

As we all know if we had to +or- fractions so its base has to be equal so

lcm of 2.3.4.5.6=60

1/2×30/30+1/3×20/20+1/4×15/15+1/5×12/12+1/6×10/10

=30+20+15+12+10/60

=50+27/60

=77/60

=1.28333333333

Answered by Anonymous
7

Answer :-

\implies\sf \dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{4} + \dfrac{1}{5} + \dfrac{1}{6}

Taking the LCM :-

\begin{array}{c|c} \underline{\sf {2}}&\underline{\sf { 2 , 3 , 4 , 5 , 6}} \\ \underline{\sf {2}}&\underline{\sf { 1,3,2,5,3 }}\\ \underline{\sf {3}}&\underline{\sf {1,3,1,5,3 }} \\ \underline{\sf {5}}&\underline{\sf 1,1,1,5,1 } \\ \underline{\sf {1}}&\sf {1,1,1,1,1 }\end{array}

\implies\sf LCM = 2 \times 2 \times 3 \times 5 = 60

\implies\sf \dfrac{1 \times 30}{2 \times 30} + \dfrac{1 \times 20}{3 \times 20} + \dfrac{1 \times 15}{4 \times 15} + \dfrac{1 \times 12}{5 \times 12} + \dfrac{1 \times 10}{6 \times 10}

\implies\sf \dfrac{30}{60} + \dfrac{20}{60} + \dfrac{15}{60} + \dfrac{12}{60} + \dfrac{10}{60}

\implies\sf \dfrac{30+20+15+12+10}{60}

\implies\sf \dfrac{87}{60}

\boxed{\sf\dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{4} + \dfrac{1}{5} + \dfrac{1}{6} = \dfrac{87}{60}}

Similar questions