Math, asked by souravruidas381, 7 months ago

1^2+2^2+3^2+4^2+........+50^2+2^2=?​

Answers

Answered by 57dhrutipatil
0

Answer:

The sum of AP is -1275

Step-by-step explanation:

Given : AP 1^2-2^2+3^2-4^2+.....1

2

−2

2

+3

2

−4

2

+..... upto 50 terms.

To find : The sum of AP

Solution :

We can write the series as,

1^2-2^2+3^2-4^2+.....+49^2-50^21

2

−2

2

+3

2

−4

2

+.....+49

2

−50

2

(1^2+3^2+5^2+.....+49^2)-2^2(1^2+2^2+3^2+.....+25^2)(1

2

+3

2

+5

2

+.....+49

2

)−2

2

(1

2

+2

2

+3

2

+.....+25

2

)

Applying the series formula,

1^2+3^2+5^2+.....+49^2=\frac{n(2n+1)(2n-1)}{3}1

2

+3

2

+5

2

+.....+49

2

=

3

n(2n+1)(2n−1)

-2^2(1^2+2^2+3^2+.....+25^2=-2^2(\frac{n(n+1)(2n+1)}{6})−2

2

(1

2

+2

2

+3

2

+.....+25

2

=−2

2

(

6

n(n+1)(2n+1)

)

Substitute,

=(\frac{25(51)(49)}{3})-4\frac{25(26)(51)}{6})=(

3

25(51)(49)

)−4

6

25(26)(51)

)

=\frac{25(51)}{3}(49-52)=

3

25(51)

(49−52)

=\frac{25(51)}{3}(-3)=

3

25(51)

(−3)

=-1275=−1275

Therefore, The sum of AP is -1275.

Similar questions