1^2 +2^2+3^2+......+9^2 =285 to (0.11)^2+(0.22)^
2+......(0.99)^2 =?
Answers
Answer
(0.11)^2+(0.22)^2+......(0.99)^2 =3.4485
Explanation
It is given that,
1^2 +2^2+3^2+......+9^2 =285
To find (0.11)^2+(0.22)^2+......(0.99)^2
(0.11)^2+(0.22)^2+......(0.99)^2 can be written as,
(0.11 x 1)^2+(0.11 x 2)^2+......(0.11 x 9)^2
=(0.11^2 x 1^2)+(0.11^2 x 2^2)+......(0.11^2 x 9^2)
(0.11^2 )( 1^2 +2^2+3^2+......+9^2 ) because 0.11 is common in all terms
We know that 1^2 +2^2+3^2+......+9^2 = 285
(0.11^2 )( 1^2 +2^2+3^2+......+9^2 ) = (0.11^2 ) x 285 = 0.0121 x 285 = 3.4485
Given 1^2 + 2^2 + 3^2...................+9^2 = 285
We have to find the value of
0.11^2 + 0.22^2 + ...................+0.99^2
We can write this as
(0.11 x 1)^2 + (0.11 x 2)^2.............+(011 x 9)^2
0.11^2 x 1^2 + 0.11 x 2^2............+0.11^2 x 9^2
By taking 0.11^2 as common factor
0.11^2(1^2 + 2^2 .................+9^2)
0.11^2 x 285 (given 1^2 + 2^2..........+9^2 = 285)
= 0.0121 x 285 = 3.4485