Math, asked by TbiaSupreme, 1 year ago

1/√2ˣ²+3 + 1/7ˣ²+3,Integrate the given function defined on proper domain w.r.t. x.

Answers

Answered by hukam0685
0
Hello,

Answer:
= log |x + \sqrt{ \frac{2 {x}^{2} + 3 }{2} } | + \frac{1}{ \sqrt{21} } {tan}^{ - 1} ( \frac{x \sqrt{7} }{ \sqrt{3} } ) + c \\

Solution:

 \frac{1}{ \sqrt{2 {x}^{2} + 3 } } + \frac{1}{7 {x}^{2} + 3 } dx
Convert both terms into 1/
 {x}^{2} + {a}^{2}

form
 =∫ \frac{1}{ \sqrt{2} \sqrt{ {x}^{2} + ( { \sqrt{ \frac{3}{2} } })^{2} } } + \frac{1}{7( {x}^{2} + { \sqrt{ \frac{3}{7} } })^{2} } dx

= \frac{1}{ \sqrt{2} } log( |x + \sqrt{( {x}^{2} + ( { \sqrt{ \frac{3}{2} } })^{2} } | ) ) + \frac{ \sqrt{7} }{7 \sqrt{3} } {tan}^{ - 1} ( \frac{x \sqrt{7} }{ \sqrt{3} } + c
is the answer,you can simplify it more if possible.

like
 = log |x + \sqrt{ \frac{2 {x}^{2} + 3 }{2} } | + \frac{1}{ \sqrt{21} } {tan}^{ - 1} ( \frac{x \sqrt{7} }{ \sqrt{3} } ) + c
Hope it helps you.
Answered by abhi178
0
I guessed your question is \int{\frac{1}{\sqrt{2x^2+3}}+\frac{1}{7x^2+3}}\,dx


=\int{\frac{1}{\sqrt{2}}\frac{1}{\sqrt{x^2+\frac{3}{2}}}+\frac{1}{7}\frac{1}{x^2+\frac{3}{7}}}\,dx


=\frac{1}{\sqrt{2}}\int{\frac{1}{\sqrt{x^2+\{\sqrt{\frac{3}{2}}\}^2}}}\,dx+\frac{1}{7}\int{\frac{1}{x^2+\{\sqrt{\frac{3}{7}}\}^2}}\,dx


=\frac{1}{\sqrt{2}}log(\sqrt{x^2+\{\sqrt{\frac{3}{2}}\}^2}+x)+\frac{1}{7}\sqrt{\frac{7}{3}}tan^{-1}\frac{x}{\sqrt{\frac{3}{7}}}+C


= tex]\frac{1}{\sqrt{2}}log(\sqrt{x^2+\{\sqrt{\frac{3}{2}}\}^2}+x)+\frac{1}{\sqrt{21}}tan^{-1}\frac{x}{\sqrt{\frac{3}{7}}}+C
Similar questions