Math, asked by laveenakalyani7, 14 days ago

1+ 2.2+3.2²+4.2³+...100.2^99=?

ans- 99.2^100

Answers

Answered by mathdude500
18

\large\underline{\sf{Solution-}}

Given series is

\rm :\longmapsto\:1 + 2.2 + 3. {2}^{2} + 4. {2}^{3} +  -  -  -  + 100. {2}^{99}

Let assume that

\rm :\longmapsto\:S = 1 + 2.2 + 3. {2}^{2} + 4. {2}^{3} +  -  -  -  + 100. {2}^{99}

Its a series of sum of product of corresponding terms of two series, one AP and other GP

\rm :\longmapsto\:1,2,3, -  -  -  -  - ,100

and

\rm :\longmapsto\:1,2, {2}^{2} , -  -  -  -  - , {2}^{99}

So, multiply the given series by common ratio 2, we get

\rm :\longmapsto\:2S = 1.2 + 2. {2}^{2}  + 3. {2}^{3} + 4. {2}^{4} +  -  -  -  + 100. {2}^{100}

On Subtracting these two equations, we get

\rm :\longmapsto\: - S = 1 + 2 +  {2}^{2} +  -  -  +  {2}^{99} - 100. {2}^{100}

\rm :\longmapsto\: - S = [1 + 2 +  {2}^{2} +  -  -  +  {2}^{99}] - 100. {2}^{100}

Now,

\rm :\longmapsto\:1,2, {2}^{2} , -  -  -  -  - , {2}^{99} is \: a \: geometric \: progression

whose

  • First term, a = 1

  • Common ratio, r = 2

  • Number of terms, n = 100

We know, Sum of n terms of GP series having first term a and common ratio r respectively is

\boxed{ \tt{ \: S_n \:  =  \:  \frac{a \: ( {r}^{n}  \:  -  \: 1)}{r \:  -  \: 1} \: }}

So, using this result, we get

\rm :\longmapsto\: - S = \dfrac{1( {2}^{100}  - 1)}{2 - 1} - 100. {2}^{100}

\rm :\longmapsto\: - S = \dfrac{{2}^{100}  - 1}{1} - 100. {2}^{100}

\rm :\longmapsto\: - S = {2}^{100}  - 1- 100. {2}^{100}

\rm :\longmapsto\: -  \: S \:  =  \: - \:  1 \: -  \: 99. {2}^{100}

\rm :\longmapsto\: \: S \:  = \:  1 \:  +  \: 99. {2}^{100}

Hence,

\boxed{ \tt{1 + 2.2 + 3. {2}^{2} + 4. {2}^{3} +  - -  + 100. {2}^{99} = 99. {2}^{100} + 1 \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions