Math, asked by monikaaswal2222, 5 hours ago

1+2+3+3+4+...+97+98+99+100=

Answers

Answered by amansharma264
7

EXPLANATION.

Method = 1.

⇒ Series : 1 + 2 + 3 + . . . . . + 100.

As we know that,

Formula of :

Sum of n terms in A.P.

⇒ Sₙ = n/2[2a + (n - 1)d].

First term = a = 1.

Common difference = d = b - a = 2 - 1 = 1.

⇒ S₁₀₀ = 100/2[2(1) + (100 - 1)(1)].

⇒ S₁₀₀ = 50[2 + 99].

⇒ S₁₀₀ = 50 x 101.

S₁₀₀ = 5050.

Method = 2.

⇒ Series : 1 + 2 + 3 + . . . . . + 100.

As we know that,

Formula of :

Summation of n terms ∑n = [n(n + 1)/2].

⇒ ∑1 + 2 + 3 + . . . . . + 100.

⇒ [100(100 + 1)/2].

⇒ [100 x 101/2].

5050.

                                                                                                                     

MORE INFORMATION.

Supposition of terms in an A.P.

(1) = Three terms as : a - d, a, a + d.

(2) = Four terms as : a - 3d, a - d, a + d, a + 3d.

(3) = Five terms as : a - 2d, a - d, a,  a + d, a + 2d.

Answered by HarshitJaiswal2534
0

Step-by-step explanation:

EXPLANATION.

Method = 1.

⇒ Series : 1 + 2 + 3 + . . . . . + 100.

As we know that,

Formula of :

Sum of n terms in A.P.

⇒ Sₙ = n/2[2a + (n - 1)d].

First term = a = 1.

Common difference = d = b - a = 2 - 1 = 1.

⇒ S₁₀₀ = 100/2[2(1) + (100 - 1)(1)].

⇒ S₁₀₀ = 50[2 + 99].

⇒ S₁₀₀ = 50 x 101.

⇒ S₁₀₀ = 5050.

Method = 2.

⇒ Series : 1 + 2 + 3 + . . . . . + 100.

As we know that,

Formula of :

Summation of n terms ∑n = [n(n + 1)/2].

⇒ ∑1 + 2 + 3 + . . . . . + 100.

⇒ [100(100 + 1)/2].

⇒ [100 x 101/2].

⇒ 5050.

                                                                                                                     

MORE INFORMATION.

Supposition of terms in an A.P.

(1) = Three terms as : a - d, a, a + d.

(2) = Four terms as : a - 3d, a - d, a + d, a + 3d.

(3) = Five terms as : a - 2d, a - d, a,  a + d, a + 2d.

Similar questions