1,2,3,4 are the zeroes of x^4+ax³+6x²+cx+d=0 then the value of a is ..............(^ is denoted for power of ) *
Answers
Step-by-step explanation:
Let's solve for a.
x4+ax3+6x2+cx+d=0
Step 1: Add -x^4 to both sides.
ax3+x4+cx+6x2+d+−x4=0+−x4
ax3+cx+6x2+d=−x4
Step 2: Add -cx to both sides.
ax3+cx+6x2+d+−cx=−x4+−cx
ax3+6x2+d=−x4−cx
Step 3: Add -6x^2 to both sides.
ax3+6x2+d+−6x2=−x4−cx+−6x2
ax3+d=−x4−cx−6x2
Step 4: Add -d to both sides.
ax3+d+−d=−x4−cx−6x2+−d
ax3=−x4−cx−6x2−d
Step 5: Divide both sides by x^3.
ax3/x3=−x4−cx−6x2−d/x3
a=−x4−cx−6x2−d/x3
Step-by-step explanation:
ANSWER
Given equation is
x
4
+ax
3
+bx
2
+cx+d=0 .....(1)
Let the roots of the equation (1) be α±iβ and γ±iδ
So, the equation will be
(x−(α+iβ))(x−(α−iβ))(x−(γ+iδ))(x−(γ−iδ))=0
⇒(x
2
−2αx+α
2
+β
2
)(x
2
−2γx+γ
2
+δ
2
)=0
Here, we have to find b
So, the coefficient of x
2
terms in above equation will give b.
⇒b=α
2
+β
2
+4αγ+γ
2
+δ
2
....(2)
Now, given α+iβ+γ+iδ=3+4i
On comparing, we get
α+γ=3 and β+δ=4
On squaring, we get
α
2
+γ
2
+2αγ=9 ....(3)
β
2
+δ
2
+2βδ=16
⇒β
2
+δ
2
=16−2βδ .....(4)
Using (3) and (4) in (2), we get
b=9+2αγ+16−2βδ ....(5)
Also, given (α−iβ)(γ−iδ)=13+i
⇒(αγ−βδ)−i(αδ+βγ)=13+i
On comparing, we get
αγ−βδ=13
Put this value in (5),we get
b=25+2(13)
b=51
Sum of digits is 6.