Math, asked by ishaahmed7476, 1 year ago

1÷2√3+√5 how to find this solution

Answers

Answered by bhupendrasingh22
1

Answer:

1/2√3+√5= 1×√3/2+√5/1=. √3+√5×2/2 =√3×√10/2=√3+√5.

Answered by AbhijithPrakash
5

Answer:

\dfrac{1}{2\sqrt{3}+\sqrt{5}}=\dfrac{2\sqrt{3}-\sqrt{5}}{7}\quad \left(\mathrm{Decimal:\quad }\:0.17543\dots \right)

Step-by-step explanation:

\dfrac{1}{2\sqrt{3}+\sqrt{5}}

\gray{\mathrm{Multiply\:by\:the\:conjugate}\:\dfrac{2\sqrt{3}-\sqrt{5}}{2\sqrt{3}-\sqrt{5}}}

=\dfrac{1\cdot \left(2\sqrt{3}-\sqrt{5}\right)}{\left(2\sqrt{3}+\sqrt{5}\right)\left(2\sqrt{3}-\sqrt{5}\right)}

\gray{1\cdot \left(2\sqrt{3}-\sqrt{5}\right)=2\sqrt{3}-\sqrt{5}}

\left(2\sqrt{3}+\sqrt{5}\right)\left(2\sqrt{3}-\sqrt{5}\right)

\gray{\mathrm{Apply\:Difference\:of\:Two\:Squares\:Formula:\:}\left(a+b\right)\left(a-b\right)=a^2-b^2}

\gray{a=2\sqrt{3},\:b=\sqrt{5}}

=\left(2\sqrt{3}\right)^2-\left(\sqrt{5}\right)^2

\black{\mathrm{Simplify}\:\left(2\sqrt{3}\right)^2-\left(\sqrt{5}\right)^2}

\left(2\sqrt{3}\right)^2-\left(\sqrt{5}\right)^2

\gray{\left(2\sqrt{3}\right)^2=12}

\gray{\left(\sqrt{5}\right)^2=5}

=12-5

\gray{\mathrm{Subtract\:the\:numbers:}\:12-5=7}

=7

=\dfrac{2\sqrt{3}-\sqrt{5}}{7}

Similar questions